WIPO-UPOV SYMPOSIUM ON INTELLECTUAL PROPERTY RIGHTS IN PLANT BIOTECHNOLOGY

organized by
the World Intellectual Property Organization (WIPO)
and
the International Union for the Protection of New Varieties of Plants (UPOV)

Geneva, October 24, 2003

DISSEMINATION OF BIOTECHNOLOGY INTO AGRICULTURE

Mr. Stephen Smith, Germplasm Security Coordinator,
Pioneer Hi-Bred International, Inc.
DuPont Agriculture and Nutrition, Johnston, United States of America
Dissemination of Biotechnology into Agriculture

WIPO-UPOV Symposium on Intellectual Property Rights in Plant Biotechnology
Geneva, Switzerland
October 24, 2003
Stephen Smith
Pioneer Hi-Bred International, Inc.
DuPont Agriculture and Nutrition

Slide 2

Dissemination of Biotechnology into Agriculture: Outline

• Introduction
• Global use of transgenics on farms
• Looking ahead
• Crops, Countries, Traits
• Intellectual Property Protection
• Conclusions
Introduction

- Agriculture is the original biotechnology
- Agriculture fundamental to culture, health, quality of environment, biodiversity
- Seed: a superb vehicle for disseminating innovation and underpinning benefits
- Effective IP critical to encourage investments and promote genetic diversity
- Biotechnology: far more than transgenes
- Development of improved germplasm critical

Yield Change

U.S. Average Corn Yields 1920 - 2002

- Grain Yield Optimum Density (Bu/ac)
- Year of Release

<table>
<thead>
<tr>
<th>Year</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920</td>
<td>40</td>
</tr>
<tr>
<td>1930</td>
<td>60</td>
</tr>
<tr>
<td>1940</td>
<td>80</td>
</tr>
<tr>
<td>1950</td>
<td>100</td>
</tr>
<tr>
<td>1960</td>
<td>120</td>
</tr>
<tr>
<td>1970</td>
<td>140</td>
</tr>
<tr>
<td>1980</td>
<td>160</td>
</tr>
<tr>
<td>1990</td>
<td>180</td>
</tr>
<tr>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>2010</td>
<td>220</td>
</tr>
</tbody>
</table>

OPV
- Double Cross
- Three Parent Cross
- Three Parent Modified SC
- Single Cross (SC)
- SC-Transgenic

y = 77.0 + 1.27x (r^2 = 0.94)

ERA Study of Pioneer Hybrids

- Grain Yield Optimum Density (Bu/ac)

Step Change in National Corn Growers Non-Irrigated Winns

(Francis Childs winning years in Red)
Slide 5

Global Area of Transgenic Crops, 1996 to 2002: Industrial and Developing Countries (million hectares)

Source: Clive James, 2002

Slide 6

Global Use of Transgenics on Farm: Area by Country 2002

- Argentina - 39 M Ha (23%)
- USA - 39 M Ha (66%)
- Canada - 3.5 M Ha (6%)
- China - 2.1 M Ha (4%)
- South Africa 0.3 M Ha (1%)

(Source: ISAAA brief no. 27, Ithaca, NY)
Global Use of Biotechnology: By Small and Large-scale Farmers

• 75% of GM crops cultivated in developed countries, large-scale farms- US, Canada
• Significant use in Argentina, Brazil, China,
• 6,000,000 farmers grew GM in 2002
• >75% of farmers were resource poor, small-scale cotton farmers, China, S. Africa

(Source: James, C 2002 ISAAA brief no. 27, Ithaca, NY)

Global Use of Transgenics on Farms: % use by Crop 2002

Maize - 12.4 M Ha (21%)
Soybean - 36.5 M Ha (62%)
Cotton - 6.8 M Ha (12%)
Canola - 3 M Ha (5%)
Papaya - 0.1 M Ha (< 1%)
Squash - 0.1 M Ha (< 1%)

(Source: ISAAA brief no. 27, Ithaca, NY)
On-Farm Use of Transgenics:
Maize 2003-data from The Context Network West Des Moines IA

Argentina/Canada RR
1,400,000 acres (4%)

Argentina/Canada Bt
3,700,000 acres (12%)

Argentina/Canada LL
500,000 acres (1%)

US Maize RR 11% of crop
8,550,000 acres (27%)

U.S. Maize Bt-23% of crop
18,000,000 acres (56%)

On-Farm Use of Transgenics:
Soybeans 2003-The Context Network West Des Moines IA

Brazil RR 50% of crop
7,264,000 acres (8%)

Argentina 95% of crop
23,608,000 acres (28%)

US RR 75% of crop
54,800,000 acres (64%)
Slide 11

Global Bt Cotton-The Context
Network West Des Moines IA

- US 36% cotton crop is Bt
- Bt cotton ranks 2nd to RR soy by global adoption
 - Close to 5 m. acres outside US
- China plants 90% of the total
 - Bollgard (40%?)
 - China’s own CASS Bt trait (60%?)
- Bollgard planted in 8 countries
 - India, 2002 launch
 - Excellent prospects, hybrid cotton
 - South Africa, Mexico, Argentina and the Philippines are minor users
- Australia launched in 1996/7
 - Different Lep. species, less effective

![BT Cotton - International Launches](chart)

Sources: Monsanto & industry comments

Slide 12

Global RR Cotton-The Context
Network West Des Moines IA

- US 54% of crop is RR
- In Mexico, RR cotton has been planted on a small acreage from 1997 on
 - Mexico is a very minor cotton producer
- In South Africa, RR cotton was launched in the 1998-9 season.
 - The country has around 150,000 acres, but by 2001/2 RR/Bollgard stacked cotton had been adopted on 28% of that total.
- In Australia, RR cotton was commercialized in the 2001/2 season
- In Argentina, RR cotton was also approved ahead of the 2001/2 planting season.

![RR Cotton - International Launches](chart)

Sources: Totals: Monsanto; Country Shares: Industry Comments

Farm Labor Cost Issue

- Herbicide-tolerance traits for China, & India, Uzbekistan?
Slide 13

Looking Ahead

- Climates change
- Farm cultivation/husbandry practices change
- Pests and diseases evolve
- Need more effective use of soil and water
- Need to increase productivity, including in harsh environments
- Un-ending need for better adapted varieties
- Improved germplasm and traits are needed

Slide 14

Looking Ahead

- Capitalizing on scientific discovery in cultivar development—new tools facilitate access
- Adds complexities and costs to Research and Product Development
- IP is a prerequisite to support trait and germplasm development
- Encourage use of new genetic diversity rather than repeated narrowing use of old base
- Compulsory licenses (e.g. breeder exemption under patent law) undermine research investments, narrow genetic base
Future: Lepidopteran pests

- ECB
 - France, Italy
 - Romania 1.5 M ac.
 - S Africa 6.5 M acres
- Southwestern CB
 - NE Mexico
 - Southern USA

- Fall Armyworm
 - Mexico
 - Argentina 4.9M ac.
 - Brazil 19 M acres
- Corn Earworm
- Cotton Bollworm
 - N and S America

Future: Coleopteran pests

- Rootworm insecticides on 14.5 M ac. USA
 - MON 863 USDA approved
 - Dow/PHI 149B1-2005
 - Brazil-insecticide use on 12M ac.

- Western rootworm in Serbia 1990s
 - Very rapid dispersal
 - 1 M ac. 1997
 - By 2001 spread to Hungary, Ukrainian border, Romania, Italy, France
The Challenge

- Population: 2000 - 6 billion, 2050 - 9 billion. 98% of projected growth will be in the developing countries.
- Malnutrition/Poverty: 840 million people suffer from chronic malnutrition, 1.3 billion afflicted by poverty.
- Cultivable Land per capita: 0.45 ha. in 1966, 0.25 ha. in 1998, 0.15 ha. in 2050.
- World grain yields grew at 2.1% in 1980s, but at less than 1.0% per annum in 1990s.
- World consumption of meat tripled in last 40 years.
- Must double food production sustainably on same land area (1.5 billion ha) by 2050.

Biotechnology Potential for Developing Countries: Crops

- Banana
- Beans
- Cassava
- Cocoa
- Coffee
- Cotton
- Cucurbits
- Groundnut
- Maize
- Millet
- Papaya
- Potato
- Rice
- Sorghum
- Sweet Pepper
- Sweet Potato
- Tomato
- Wheat
Biotechnology Potential for Developing Countries: Traits

- Acid soil tolerance
- Apomixis
- Disease diagnosis kits
- Drought resistance
- Edible vaccines
- Fungal resistance
- Genetic maps
- Genomics
- High lysine
- Insect resistance
- Low soil nutrients
- Marker assisted selection
- Nematode resistance
- Starch quality
- Striga resistance
- Tissue culture
- Transformation technology
- Virus resistance
- Weed control

Biotechnology for Developing Countries: Organizations

- **CGIAR**: (e.g.) CIAT, CIP, CIMMYT, ICRISAT, IPGRI, IRRI
- **Foundations**: African Agricultural Technology Foundation, Rockefeller, Danforth Institute, others
- **Governments**: USAID
- **NARS**: EMBRAPA, Brazil, USDA, numerous others in many countries
- **NGOs**: Harvest Biotech Foundation International, Kenya, others
- **Private sector**: Dow, Garst, Monsanto, Mycogen, Pioneer, Syngenta, others
- **Public sector**: many universities in numerous countries
Intellectual Property Protection

• Application of biotechnology requires investments into basic and applied research hitherto not undertaken in crop improvement
• New abilities to characterize, isolate and modify genes/germplasm allow additional IP on crop genetics research and enabling technologies
• IP protection an absolute prerequisite to encourage private sector investments

Intellectual Property Protection

• N. America – private sector investments in plant breeding increased from $50m (1960) to $500m (1997)
• Public sector investments in field crops level from late 70’s; declined since mid 90’s ($600m)
• Globally: Private sector $3.4 billion food and agriculture research annually; much more than public sector
Slide 23

Intellectual Property Protection

- Public sector does not have all the financial, germplasm or technical resources needed to move basic research into products on farms
- No single private sector player has all the technology or germplasm needed to meet farmer needs
- Public sector can reach areas not currently commercially viable for private sector
- Key roles for public and private sectors

Slide 24

Intellectual Property Protection: Bt Maize: an Example

- **Gene ownership**
 - Cry1F
 - PAT marker gene
- **Enabling technologies**
 - Microprojectile bombardment
 - Herbicide selection
 - Backcrossing
 - Production of fertile transgenic
- **Enhanced expression**
 - Chimeric genes using viral promoters
 - Enhanced expression
 - Enhanced transcription efficiency
 - Selective Gene expression
- **Elite maize inbreds and hybrids**
From Research to the Farmer’s Field: IPP Issues Bt Maize

- Recent agreements among major players allow forward movement in plant biotechnology
- Cross-licenses
 - Dow licenses RR YG
 - Monsanto licenses Herculex 1
 - Pioneer licenses RR for corn, soybean, canola
 - Pioneer germplasm issues with Monsanto resolved
- Matured from competing on developing basic technologies to most effective use of technologies to create improved products
- Payment for technology/germplasm research is ultimately dependent on farmer purchases of seed

Intellectual Property Protection-Germplasm Development

- Breeders should have option of same level of IP as any other field of invention
- Development of germplasm and traits; key
- Patents should be available as an alternative
- Patents should not have compulsory license or breeder exemption
- New technologies facilitate access; recalibrate IP-access balance; Revise UPOV
- Increase incentives to develop new germplasm versus encourage repeated use of widely used varieties
Conclusions and Future Prospects

- Increase knowledge and capabilities through research
- Increase productivity and positive environmental impacts of agriculture
- Need strong public and private sectors
- More effective IP for germplasm development
- Bridge gaps between research plots and farmers fields
- Conservation and evaluation of genetic resources for future use

Dissemination to Culture and the Human Spirit

- “When I got home I heard John Barbirolli conducting Beethoven’s Seventh Symphony. What was agriculture for except that such a thing as that symphony and the playing of it should be made possible? To make bread so that it shall be possible for mankind to have more than bread; to listen to a Beethoven, a Sibelius, a Tchaikovsky, uttering some far message of paradox and joy”.

Acknowledgements

- Eric Barbour
- Joanne Barton
- Mark Cooper
- David Ertl
- Tim Helentjaris
- Enno Krebbers
- Tony Nevshemal
- Bill Niebur
- Antoni Rafalski
- Howie Smith
- Scott Tingey
- Dwight Tomes