

TGP/15/1 Draft 2

ORIGINAL: anglais seulement

DATE: 9 février 2012

UNION INTERNATIONALE POUR LA PROTECTION DES OBTENTIONS VÉGÉTALES

Genève

PROJET

Document connexe

<u>à</u>

<u>l'Introduction générale à l'examen de</u> <u>la distinction, de l'homogénéité et de la stabilité</u> et à l'harmonisation des descriptions des obtentions végétales (document TG/1/3)

DOCUMENT TGP/15 "NOUVEAUX TYPES DE CARACTÈRES [CONSEILS EN CE QUI CONCERNE L'UTILISATION DES MARQUEURS BIOCHIMIQUES ET MOLÉCULAIRES DANS L'EXAMEN DE LA DISTINCTION, DE L'HOMOGÉNÉITÉ ET DE LA STABILITÉ (DHS)"]

Document établi par le Bureau de l'Union pour examen par

le Comité technique à sa quarante-huitième session, qui se tiendra à Genève du 26 au 28 mars 2012

et

le Comité administratif et juridique à sa soixante-cinquième session qui se tiendra à Genève le 29 mars 2012

Précisions concernant cette version

Le texte barré (en surbrillance) a été supprimé du document UPOV/INF/18/1 "Utilisation possible des marqueurs moléculaires dans l'examen de la distinction, de l'homogénéité et de la stabilité (DHS)". (Note : les sections et les paragraphes entièrement supprimés ne sont pas indiqués : voir l'explication dans l'"introduction").

Le <u>texte souligné</u> (en surbrillance) a été ajouté au document UPOV/INF/18/1 "Utilisation possible des marqueurs moléculaires dans l'examen de la distinction, de l'homogénéité et de la stabilité (DHS)".

Les notes de bas de page seront conservées dans le document publié.

Les notes en fin de texte sont des informations générales destinées à faciliter l'examen de ce projet : elles ne figureront pas dans le document final qui sera publié.

TGP/15/1 Draft 2 page 2

TABLE DES MATIÈRES

1.	INTR	ODUCTION	3
<u>2.</u> 3.		LUATION DES MODÈLES D'APPLICATION ÉVENTUELS	
	3.1 2.1 2.2	Modèles avec une évaluation positive Marqueurs moléculaires propres aux caractères (voir l'annexe 1) combinaison de distances phénotypiques et moléculaires pour gérer des collections de variétés (voir l'annexe 4-2)	4
ANNE	EXE 1	MODÈLE: MARQUEURS MOLÉCULAIRES PROPRES AUX CARACTÈRES EXEMPLE 1: MARQUEUR DE GENE CONCERNANT LA TOLERANCE AUX HERBICIDES	
ANNE	EXE 2	MODELE : COMBINAISON DE DISTANCES PHENOTYPIQUES ET MOLECULAIRES POU GERER DES COLLECTIONS DE VARIETES EXEMPLE : LIGNÉES PARENTALES DU MAÏS	JR

1. INTRODUCTION

- 1.1 Le document UPOV/INF/18/1 "Utilisation possible des marqueurs moléculaires dans l'examen de la distinction, de l'homogénéité et de la stabilité (DHS)" concerne des modèles d'application éventuels aux fins de l'utilisation des marqueurs biochimiques et moléculaires dans l'examen DHS proposés au Sous-groupe ad hoc d'experts techniques et juridiques sur les techniques biochimiques et moléculaires (Groupe de réflexion sur les travaux du BMT) par le Comité technique, sur la base des travaux du Groupe de travail sur les techniques biochimiques et moléculaires, notamment les profils d'ADN (ci-après dénommé "BMT") et des sous-groupes ad hoc sur les techniques moléculaires (sous-groupes sur les plantes cultivées) (voir http://www.upov.int/about/fr/organigram.html). L'évaluation réalisée par le Groupe de réflexion sur les travaux du BMT et les opinions du Comité technique et du Comité administratif et juridique (CAJ) sur ces modèles sont présentées dans le document UPOV/INF/18.
- 1.2 Le présent document contient des conseils en ce qui concerne l'utilisation des marqueurs biochimiques et moléculaire dans l'examen de la distinction, de l'homogénéité et de la stabilité (DHS) sur la base des modèles qui figurent dans le document UPOV/INF/18 qui ont été évalués positivement et pour lesquels des exemples acceptés ont été fournis.
- 1.3 Les seules obligations impératives pour les membres de l'Union sont celles qui figurent dans le texte de la Convention UPOV proprement dite; les notes explicatives ne doivent pas être interprétées d'une manière qui ne serait pas conforme à l'acte pertinent pour le membre de l'Union concerné.
- .4 Les abréviations ci-après sont utilisées dans le présent document :

CAJ: Comité administratif et juridique

TC: Comité technique

TC-EDC : Comité de rédaction élargi

TWA: Groupe de travail technique sur les plantes agricoles

TWC: Groupe de travail technique sur les systèmes d'automatisation et

les programme d'ordinateur

TWF: Groupe de travail technique sur les plantes fruitières

TWO: Groupe de travail technique sur les plantes ornementales et les arbres

forestiers

TWV: Groupe de travail technique sur les plantes potagères

TWP: Groupe de travail technique

BMT: Groupe de travail sur les techniques biochimiques et moléculaires,

notamment les profils d'ADN

Groupe de réflexion sur

les travaux du BMT: Sous-groupe ad hoc d'experts techniques et juridiques sur les techniques

biochimiques et moléculaires

Sous-groupe sur

les plantes cultivées : Sous-groupe ad hoc sur l'application des techniques moléculaires

aux plantes cultivées

TGP/15/1 Draft 2 page 4

2. 3. ÉVALUATION DES MODÈLES D'APPLICATION ÉVENTUELS

- 3.1 Modèles avec une évaluation positive
- 2.1 Marqueurs moléculaires propres aux caractères (voir l'annexe 1)
- 2.3-1.1 À sa réunion du 16 avril 2002, ILe Groupe de réflexion sur les travaux du BMT a examiné des exemples d'utilisation de techniques biochimiques et moléculaires figurant dans l'annexe du document TC/38/14-CAJ/45/5. Elle en a conclu ce qui suit en ce qui concerne l'exemple reproduit dans l'annexe 1 du présent document (Modèle : "Marqueurs moléculaires propres aux caractères")¹:

Sur la base des hypothèses décrites, "[...] l'[exemple] 1 [...] a été déclaré acceptable selon les termes de la Convention UPOV et ne nuira pas à la valeur de la protection offerte par le système de l'UPOV" (voir le paragraphe 3.1.1 du document TC/38/14 Add. CAJ/45/5 Add. UPOV/INF/18).

- 2.3.1.2 Le TC a examiné les conclusions du Groupe de réflexion sur les travaux du BMT et est convenu que l'exemple 1 pouvait être développé sur la base des hypothèses tout en reconnaissant la nécessité de plus amples travaux aux fins de l'examen de ces hypothèses (voir le paragraphe 5 du document TC/38/14 Add.-CAJ/45/5 Add. paragraphe 3.1.2 du document UPOV/INF/18).
- 2.3.1.3 Le CAJ a souscrit aux conclusions du Groupe de réflexion sur les travaux du BMT et a fait sien l'avis du TC (voir le paragraphe 7 du document TC/38/14 Add.-CAJ/45/5 Add. paragraphe 3.1.3 du document UPOV/INF/18).
- 2.3.1.4 Aux fins de l'examen du modèle et de l'exemple, tels que figurant dans l'annexe 1 du présent document, le TC a souligné l'importance du respect de ces hypothèses. À cet égard, il a expliqué qu'il s'agissait d'une question que l'administration compétente devait examiner pour vérifier qu'il satisfait aux hypothèses (voir le paragraphe 152 du document TC/45/16 "Compte rendu" paragraphe 3.1.4 du document UPOV/INF/18).
- 2.2 combinaison de distances phénotypiques et moléculaires pour gérer des collections de variétés (voir l'annexe 4-2)
- 2.2.1 3.1.5 À sa réunion du 1^{er} avril 2009 (voir les paragraphes 12 et 13 du document BMT-RG/Apr09/3 "Compte rendu"), le Groupe de réflexion sur les travaux du BMT :
 - a) a conclu que l'"[...] [exemple] figurant à l'annexe du document BMT-RG/Apr09/2 '[...] Système permettant la combinaison de distances phénotypiques et moléculaires pour gérer des collections de variétés' (intégrant les précisions énoncées dans les paragraphes 7 et 8 du document BMT-RG/Apr09/3 'Compte rendu'), [reproduite dans l'annexe 4–2 du présent document], lorsque utilisé pour la gestion de collections des variétés, était acceptable selon les termes de la Convention de l'UPOV et ne nuirait pas à la valeur de la protection offerte par le système de l'UPOV"; et
 - b) est convenu que l'exemple ci-dessus "constituait un modèle susceptible d'être appliqué à d'autres cultures pour autant que les éléments de [...] l'[exemple] soient également applicables. À cet égard, le Groupe de réflexion sur les travaux du BMT a relevé par exemple que [...] l'[exemple] ci-dessus ne s'appliquait qu'aux lignées parentales du maïs et ne s'étendait pas à d'autres types de variétés de maïs. Le Groupe de réflexion sur les travaux du BMT a conclu qu'il était important de déterminer au cas par cas si le modèle serait applicable."

2.2.2 3.1.6 Le CAJ a approuvé les recommandations du Groupe de réflexion sur les travaux du BMT, telles qu'elles apparaissent ci-dessus (voir les paragraphes 53 et 54 du document CAJ/60/11 "Compte rendu").

Par ailleurs, le secrétaire général adjoint a aussi formulé les remarques générales ci-après à propos de la réunion du Groupe de réflexion sur les travaux du BMT tenue le 16 avril 2002. Premièrement, les possibilités d'accès aux techniques protégées par brevet suscitent des inquiétudes. Deuxièmement, le groupe a souligné qu'il importait d'examiner la rentabilité de toute nouvelle méthode. Troisièmement, l'importance que revêt la corrélation entre les caractères phénotypiques et les techniques moléculaires a aussi été examinée. Enfin, il a été souligné qu'il importait d'examiner l'homogénéité et la stabilité en fonction des mêmes caractères que ceux qui sont utilisés pour établir la distinction (voir le paragraphe 4 du document TC/38/14 Add. CAJ/45/5 Add paragraphe 3.1.1 du document UPOV/INF/18).

TGP/15/1 Draft 2 page 5

<u>2.2.3</u> 3.1.7 Le TC a noté que le CAJ avait approuvé les recommandations du Groupe de réflexion sur les travaux du BMT et fait siennes les recommandations dudit groupe, telles qu'elles sont exposées ci-dessus (voir le paragraphe 42 du document TC/46/15 "Compte rendu des conclusions").

[Les annexes suivent]

TGP/15/1 Draft 2

ANNEXE 1

MODÈLE: MARQUEURS MOLÉCULAIRES PROPRES AUX CARACTÈRES

EXEMPLE 1: MARQUEUR DE GENE CONCERNANT LA TOLERANCE AUX HERBICIDES

établi par des experts de la France

Exemple

- 1. Une variété est génétiquement modifiée par l'insertion d'un gène conditionnant la tolérance à la "formule X" d'un herbicide donné. Les variétés comportant ce gène restent intactes lorsqu'elles sont pulvérisées avec la formule X, tandis que celles qui en sont dépourvues meurent systématiquement lorsqu'elles sont pulvérisées avec l'herbicide en question. La tolérance à la formule X, examinée dans le cadre d'essais en plein champ au moyen de l'aspersion des parcelles, est un caractère DHS agréé, et elle peut donc être utilisée pour déterminer la distinction entre des variétés.
- 2. Au lieu de pulvériser les variétés en plein champ (ce qui est difficile à réaliser dans le cadre de l'examen DHS normalisé), il est proposé d'examiner le caractère "tolérance à la formule X" en procédant à un essai pour mettre en évidence la présence d'un marqueur moléculaire *lié* à ce gène. Ce marqueur est situé sur une partie du gène "chimère". Le gène "chimère" se compose de tous les éléments qui sont insérés dans la plante au cours de la modification génétique et contient, en outre, des éléments supplémentaires permettant de réguler le gène une fois dans la plante. Le marqueur peut être situé dans le gène, en partie sur le gène ou encore à l'extérieur de celui-ci.

Hypothèses à formuler aux fins de l'exemple

- 3. On part des hypothèses suivantes :
 - a) Examen DHS

On suppose que l'essai concernant le marqueur sera réalisé dans les mêmes conditions que l'essai en plein champ, autrement dit qu'il sera effectué pour le même nombre de plantes individuelles, pendant le même nombre d'années et avec les mêmes critères de distinction, d'homogénéité et de stabilité.

b) Fiabilité de la corrélation

On suppose que la corrélation entre le marqueur et le gène sera vérifiée afin de s'assurer que le marqueur est un prédicteur fiable de la tolérance à la formule X. Cette vérification serait nécessaire pour garantir, par exemple, que le marqueur ne se sépare pas du gène et que la présence de ce gène continue de se traduire par la tolérance à la formule X.

c) Création de marqueurs moléculaires différents pour le même gène

Il serait possible de créer des gènes chimères différents contenant le gène de la tolérance à la formule X et d'identifier pour chacun de ces gènes chimères des marqueurs moléculaires indépendants qui seraient tous liés à exactement le même gène de la tolérance à la formule X. Dès lors que tous les marqueurs différents pour le même gène seraient admis comme autant de méthodes différentes pour l'examen du même caractère phénotypique existant, ce procédé serait considéré de la même façon dans tous les cas. Aux fins de l'utilisation de "[...] [marqueurs] moléculaires en tant que prédicteurs de caractères traditionnels", il faut poser comme principe que les marqueurs correspondent à un caractère traditionnel, c'est-à-dire à un caractère approuvé existant. Par conséquent, on suppose que des marqueurs différents pour le même gène seront traités comme autant de différentes méthodes pour l'examen du même caractère, à savoir la tolérance à la formule X.

TGP/15/1 Draft 2 Annexe 1, page 2

d) Gènes différents à l'origine de la tolérance au même herbicide

Il serait possible de créer des gènes différents à l'origine de la tolérance à la formule X. Dans le cas le plus simple, ce procédé pourrait être considéré de la même manière que celui qui consiste à créer des marqueurs différents pour le même gène, c'est-à-dire que les différents gènes, assortis de leur marqueur correspondant, seraient considérés comme étant différentes méthodes d'examen du même caractère, à savoir la tolérance à la formule X. Toutefois, il est probable que les différents gènes produisent la tolérance à la formule X selon un mécanisme chimique différent. Par conséquent, les composants chimiques produits par ces gènes seront différents et ils pourraient servir de base à l'établissement de la distinction dans certains cas. Il n'en sera pas moins nécessaire, dans le cadre du présent modèle, d'approuver tout d'abord ces composants chimiques en tant que caractères UPOV, avant d'accepter les marqueurs moléculaires liés à ces caractères éventuels. Cela ferait alors l'objet d'un exemple indépendant. Par conséquent, on suppose que des gènes différents seront traités comme autant de différentes méthodes pour l'examen du même caractère, à savoir la tolérance à la formule X.

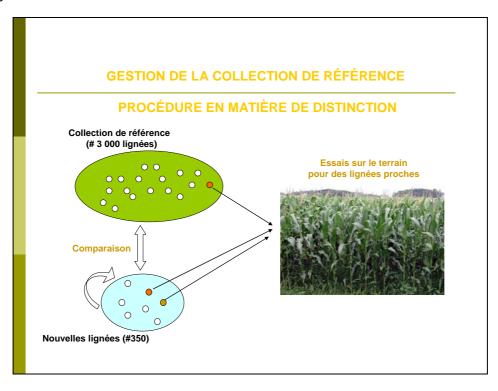
e) Gènes chimères différents à l'origine de la tolérance au même herbicide, mais présentant un contrôle de l'expression différent

Il est aussi possible de créer des gènes chimères différents comportant le même gène de la tolérance à la formule X, mais présentant des éléments de régulation différents. Par exemple, les éléments de régulation peuvent se manifester par l'activation de la tolérance à la formule X seulement à certains stades du développement. Par souci de simplicité, lorsqu'on envisage cet exemple, on suppose que les différents marqueurs liés à différents éléments de régulation pour le même gène seront tous traités comme autant de méthodes différentes pour l'examen du même caractère de tolérance à la formule X. Néanmoins, on part aussi du principe que cette question sera examinée plus avant à un stade ultérieur.

[L'annexe 2 suit]

ANNEXE 2

MODELE : COMBINAISON DE DISTANCES PHENOTYPIQUES ET MOLECULAIRES POUR GERER DES COLLECTIONS DE VARIETES


EXEMPLE: LIGNÉES PARENTALES DU MAÏS

établi par des experts de la France

1. Description

- 1.1 Le processus d'élimination des variétés notoirement connues avant l'essai DHS en culture se distingue notamment par le fait que le seuil permettant de déterminer quelles variétés peuvent être exclues sans risques (par exemple, quelles variétés sont distinctes d'après les descriptions) peut être fixé avec une marge de sécurité appropriée, puisque les variétés qui sont éliminées ne figureront pas dans l'essai en culture. Ce seuil, assorti d'une marge de sécurité, est dénommé le seuil de "distinction plus", ce qui signifie que les distances entre une variété candidate et les variétés "distinctes plus" sont suffisamment robustes pour que l'on prenne une décision sans comparaison directe dans le cadre de l'essai en culture.
- 1.2 Cet exemple a pour objet d'élaborer un outil efficace fondé sur une combinaison de distances phénotypiques et moléculaires pour identifier, dans la collection de variétés, les variétés qu'il y a lieu de comparer avec les variétés candidates (voir figure 1) afin d'améliorer la sélection des variétés "distinctes plus" et de limiter ainsi la charge de travail sans réduire la qualité de l'essai. La difficulté consiste à élaborer un système sûr qui :
 - a) permette de sélectionner seulement les variétés semblables aux variétés candidates; et
- b) limite le risque de ne pas sélectionner une variété figurant dans la collection de variétés qu'il faut comparer sur le terrain, notamment lorsqu'il y a une collection de variétés importantes ou onéreuses.

Figure 1

- 1.3 Le nouveau système a été élaboré sur la base suivante :
- a) études effectuées sur les distances moléculaires dans le maïs afin de procéder à un examen DHS et sur la dérivation essentielle, qui ont montré le lien qui existait avec le parentage entre les variétés (voir document BMT/3/6 "The Estimation of Molecular Genetic Distances in Maize or DUS and ED Protocols : Optimization of the Information and new Approaches of Kinship" et le document BMT/3/6 Add.);
- b) une expérience menée par le GEVES sur une série de lignées parentales qui a montré qu'il existait un lien entre l'évaluation de la distinction effectuée par les experts (évaluation globale) et une distance moléculaire calculée sur la base de données moléculaires tirées de la répétition séquence simple (SSR) (voir figure 2).

1.4 Éléments du système

1.4.1 Distance GAIA

L'élément distance GAIA est calculé grâce au logiciel GAIA mis au point par le GEVES. La distance GAIA est une combinaison des différences observées à partir de caractéristiques phénotypiques où chaque différence contribue à la distance selon la fiabilité des caractéristiques notamment en ce qui concerne sa variabilité et sa susceptibilité à l'environnement. Plus la différence et la fiabilité des caractéristiques sont importantes, plus la différence contribue à la distance GAIA. Seules les différences qui sont égales ou supérieures à la distance minimale requise pour chaque caractéristique individuelle sont indiquées.

1.4.2 Distance moléculaire

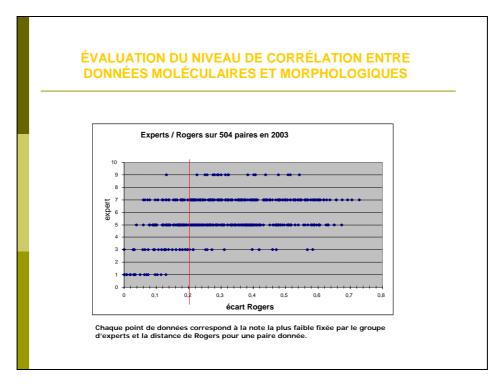
L'élément distance moléculaire est calculé à partir des différences observées sur une série de marqueurs. On peut utiliser différents types de marqueurs et de distances moléculaires. S'agissant de l'étude menée en France sur le maïs, on s'est servi de 60 marqueurs SSR et de la distance de Rogers. Il est important d'utiliser un nombre suffisant de marqueurs avec une bonne répartition chromosomique. Le type de marqueur, l'effet du nombre de marqueurs et la répartition des marqueurs doivent être pris en compte en fonction de l'espèce concernée.

1.4.3 Avant de combiner ces deux éléments, il y a lieu de procéder à une évaluation du lien existant entre la distance moléculaire et une évaluation globale de la distinction effectuée par un groupe d'experts sur une série de paires de variétés. S'agissant du maïs, cette évaluation avait été effectuée sur la base suivante :

Matériel : 504 paires de variétés testées parallèlement avec des marqueurs moléculaires

Configuration sur le terrain : paires de variétés cultivées côte à côte (1 parcelle = 2 rangées de 15 plantes)

Évaluation visuelle par des experts en culture de maïs :


Échelle de similarité :

- 1. les deux variétés sont semblables ou très proches
- 3. les deux variétés sont distinctes mais proches
- 5. la comparaison a été utile mais les variétés sont nettement distinctes
- 7. la comparaison aurait dû être évitée car les variétés sont très différentes
- 9. la comparaison aurait dû être évitée car les variétés sont totalement différentes

(on n'utilise pas de notes "paires" dans l'échelle)

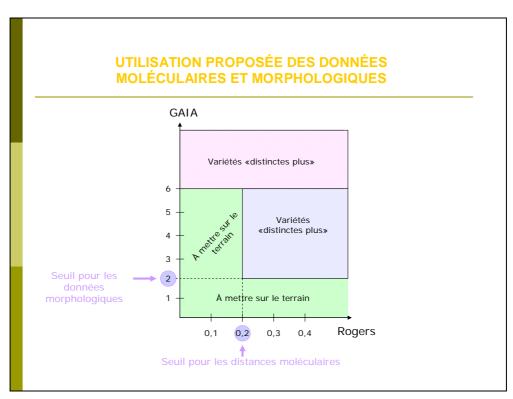

S'agissant du maïs, cette évaluation a montré qu'aucune lignée parentale avec une distance moléculaire supérieure à 0,15 n'a été considérée comme semblable ou très proche lors d'une évaluation d'experts DHS (voir la figure 2).

Figure 2

1.4.4 Sur la base de ce résultat, la combinaison des distances morphologiques et moléculaires donne la possibilité de mettre au point un système de décision comme celui qui suit (voir la figure 3) :

Figure 3

TGP/15/1 Draft 2 Annexe 2, page 4

- 1.4.5 Toutes les paires de variétés avec une distance GAIA égale ou supérieure à 6 et toutes les variétés avec une distance GAIA se situant entre 2 et 6, plus une distance moléculaire égale ou supérieure à 0,2 sont déclarées "distinctes plus".
- 1.4.6 Ce système montre qu'il n'est pas nécessaire d'observer sur le terrain autant de lignées parentales que dans la situation où seule une distance GAIA de 6 est utilisée.
- 1.4.7 La robustesse de ce système a été vérifiée avec différentes distances GAIA et moléculaires.

2. Avantages et contraintes

2.1 Avantages

- a) Meilleure gestion des collections de variétés avec moins de variétés à comparer sur le terrain;
- utilisation des distances morphologiques et moléculaires avec des seuils définis par les experts DHS. GAIA a également été calibré par rapport aux évaluations des experts DHS lors de la mise au point par le GEVES;
- c) utilisation de données moléculaires qui ne sont pas susceptibles à l'environnement; la série de marqueurs et le protocole de laboratoire sont bien définis;
- d) utilisation seulement de caractéristiques phénotypiques avec une bonne robustesse et la possibilité d'utiliser des descriptions provenant de différentes sources dans le cadre d'une coopération étroite (la base de données sur le maïs qui a été élaborée en coopération entre l'Allemagne, l'Espagne, la France et l'Office communautaire des variétés végétales (OCVV) de l'Union européenne constitue un bon exemple de l'intérêt de cette méthode pour une collection de variétés partagée entre différents offices);
- e) les caractéristiques électrophorétiques peuvent également être remplacées; et
- f) l'absence d'uniformité n'influe en rien sur les profils moléculaires pour autant qu'un nombre suffisant de marqueurs soit utilisé et que le nombre de variantes soit faible. S'agissant des lignées parentales du maïs, le niveau d'uniformité moléculaire est élevé mais pourrait être un problème pour certaines autres cultures.

2.2 Contraintes

- a) Pas efficace ou moins efficace pour les espèces avec des variétés synthétiques ou des populations;
- b) nécessité de disposer d'un nombre suffisant de bons marqueurs ADN et d'un nombre suffisant de caractéristiques phénotypiques avec une faible susceptibilité à l'environnement; et
- c) travail préliminaire avec calibrage par rapport à l'évaluation de la distinction établie par des experts DHS.

[Fin de l'annexe 2 et du document]