

Disclaimer: unless otherwise agreed by the Council of UPOV, only documents that have been adopted by the Council of UPOV and that have not been superseded can represent UPOV policies or guidance.

This document has been scanned from a paper copy and may have some discrepancies from the original document.

Avertissement: sauf si le Conseil de l'UPOV en décide autrement, seuls les documents adoptés par le Conseil de l'UPOV n'ayant pas été remplacés peuvent représenter les principes ou les orientations de l'UPOV.

Ce document a été numérisé à partir d'une copie papier et peut contenir des différences avec le document original.

Allgemeiner Haftungsausschluß: Sofern nicht anders vom Rat der UPOV vereinbart, geben nur Dokumente, die vom Rat der UPOV angenommen und nicht ersetzt wurden, Grundsätze oder eine Anleitung der UPOV wieder.

Dieses Dokument wurde von einer Papierkopie gescannt und könnte Abweichungen vom Originaldokument aufweisen.

Descargo de responsabilidad: salvo que el Consejo de la UPOV decida de otro modo, solo se considerarán documentos de políticas u orientaciones de la UPOV los que hayan sido aprobados por el Consejo de la UPOV y no hayan sido reemplazados.

Este documento ha sido escaneado a partir de una copia en papel y puede que existan divergencias en relación con el documento original.

UPOV

TC/34/5

ORIGINAL: anglais

DATE: 20 janvier 1998

UNION INTERNATIONALE POUR LA PROTECTION DES OBTENTIONS VÉGÉTALES GENÈVE

COMITÉ TECHNIQUE

Trente-quatrième session Genève, 30 mars - 1^{er} avril 1998

EXAMEN DE L'HOMOGÉNÉITÉ DES ESPÈCES AUTOGAMES ET DES ESPÈCES À MULTIPLICATION VÉGÉTATIVE FONDÉ SUR LES PLANTES HORS-TYPE (VERSION RÉVISÉE DU DOCUMENT TWC/11/16)

Document établi par le Bureau de l'Union

EXAMEN DE L'HOMOGÉNÉITÉ DES ESPÈCES AUTOGAMES ET DES ESPÈCES À MULTIPLICATION VÉGÉTATIVE FONDÉ SUR LES PLANTES HORS-TYPE

TABLE DES MATIÈRES

RÉSUMÉ	3
INTRODUCTION	3
ERREURS POSSIBLES DANS L'EXAMEN DES PLANTES HORS-TYPE	3
EXEMPLES	5
Exemple n° 1	5
EXEMPLE N° 2	
EXEMPLE N° 3	7
Exemple n° 4	9
PRÉSENTATION DES TABLES ET FIGURES	q
DESCRIPTION DÉTAILLÉE DE LA MÉTHODE À UTILISER POUR UN SEUL EXAMEN PLUS D'UN SEUL EXAMEN (ANNÉE) DESCRIPTION DÉTAILLÉE DES MÉTHODES POUR PLUS D'UN SEUL EXAMEN	12
EXAMEN COMBINÉ	12
Examen en deux étapes	
EXAMENS SÉQUENTIELS	14
NOTE RELATIVE AUX ERREURS DE TYPE I OU DE TYPE II	14
DÉFINITION DE TERMES ET SYMBOLES STATISTIQUES	14
TADI EC ET EICIIDEC	16

RÉSUMÉ

- 1. L'homogénéité des variétés candidates d'espèces autogames et d'espèces à multiplication végétative s'évalue en général en fonction du nombre de plantes hors-type enregistré au cours des examens. La question qui se pose alors est la suivante : combien de plantes hors-type faut-il accepter? Ce nombre devra être fixé de sorte que la probabilité de rejet d'une variété candidate qui répond à la norme de cette espèce soit faible. Pour autant, la probabilité d'acceptation d'une variété candidate comportant beaucoup plus de plantes hors-type que la norme de cette espèce devra aussi être faible.
- 2. Les méthodes décrites dans le présent document visent à résoudre le problème du choix du nombre de plantes hors-type tolérable pour différentes normes et différentes tailles d'échantillons afin que la probabilité d'erreur soit connue et acceptable. Les méthodes consistent à définir la norme de l'espèce en question, puis à choisir la taille de l'échantillon et le nombre de plantes hors-type qui correspond le mieux aux risques pouvant être tolérés.
- 3. On trouvera aussi dans le présent document une description, dans leurs grandes lignes, des procédures à suivre lorsque plus d'un seul examen (par exemple, des tests sur plus d'une année) doit être effectué. Y est également abordée la possibilité de recourir à des analyses séquentielles pour faciliter l'examen. Ces méthodes sont destinées à être utilisées lors de l'élaboration ou de la révision des principes directeurs d'examen et visent à aider les experts à adopter une stratégie pour l'examen des plantes hors-type.

INTRODUCTION

- 4. Lorsqu'on examine l'homogénéité d'une espèce sur la base d'un échantillon, on court toujours le risque de prendre une mauvaise décision. Pour réduire ce risque, on peut augmenter la taille de l'échantillon mais le coût sera plus élevé. La démarche statistique décrite dans le présent document vise à parvenir à un équilibre acceptable entre les différents risques.
- 5. D'après les procédures décrites dans le présent document, l'utilisateur doit définir une norme acceptable (appelée "norme de population") pour l'espèce en question, ce qui lui permettra ensuite de déterminer la taille de l'échantillon et le nombre maximum de plantes hors-type toléré pour différents niveaux de risque.
- 6. La norme de population peut s'exprimer sous la forme d'un pourcentage de plantes hors-type que l'on tolérerait si tous les individus d'une variété donnée pouvaient être examinés.

ERREURS POSSIBLES DANS L'EXAMEN DES PLANTES HORS-TYPE

- 7. Ainsi qu'on l'a vu plus haut, on court le risque de prendre une mauvaise décision. Il existe deux types d'erreur :
- a) déclarer que la variété est trop hétérogène alors qu'en réalité elle répond à la norme de l'espèce. Il s'agit de l'"erreur de type I";
- b) déclarer que la variété est homogène alors qu'en réalité elle ne répond pas à la norme de l'espèce. Il s'agit de l'"erreur de type II".

8. Ces deux types d'erreur peuvent être résumés dans le tableau suivant :

État véritable de la variété	Décision prise		
	acceptée	rejetée	
homogène	acceptée à raison	erreur de type I	
hétérogène	erreur de type II	rejetée à raison	

9. La probabilité de considérer, à raison, une variété comme étant homogène s'appelle la probabilité d'acceptation; elle est liée à la probabilité de commettre une erreur de type I par la relation suivante :

"Probabilité d'acceptation" + "probabilité d'erreur de type I" = 100%

- 10. La probabilité de commettre une erreur de type II dépend de la mesure dans laquelle la variété candidate est hétérogène. Si elle est beaucoup plus hétérogène que la norme de population, la probabilité de commettre une erreur de type II est faible et la probabilité d'acceptation d'une telle variété hétérogène est également faible. Si, au contraire, la variété candidate n'est que légèrement plus hétérogène que la norme, la probabilité de commettre une erreur de type II est élevée. La probabilité d'acceptation d'une telle variété est élevée et se rapproche d'autant plus de la probabilité d'acceptation que la variété candidate se rapproche de la norme de population (mais la rigueur de cette corrélation ira en s'amenuisant).
- 11. La probabilité de commettre une erreur de type II dépendant de la mesure dans laquelle la variété candidate est hétérogène, il est nécessaire de prendre pour hypothèse un certain degré d'hétérogénéité avant de calculer cette probabilité. Dans le cas présent, la probabilité de commettre une erreur de type II est calculée pour trois degrés d'hétérogénéité : 2, 5 et 10 fois la norme de population.
- 12. En règle générale, la probabilité de commettre une erreur décroît lorsqu'on augmente la taille de l'échantillon et, inversement, elle s'accroît lorsqu'on diminue la taille de l'échantillon.
- 13. Pour une taille d'échantillon donnée, il est possible de modifier l'équilibre entre les deux types d'erreur en changeant le nombre de plantes hors-type toléré.
- 14. Lorsqu'on augmente le nombre de plantes hors-type toléré, la probabilité de commettre une erreur de type I diminue tandis que celle de commettre une erreur de type II augmente. De la même façon, lorsque l'on diminue le nombre de plantes hors-type toléré, la probabilité de commettre une erreur de type I augmente tandis que la probabilité de commettre une erreur de type II diminue.
- 15. Si l'on tolère un nombre très élevé de plantes hors-type, on peut ramener à un niveau très faible (presque nul) la probabilité de commettre une erreur de type I, mais alors la probabilité de commettre une erreur de type II sera portée à un niveau élevé (inacceptable). Si l'on tolère uniquement un très faible nombre de plantes hors-type, la probabilité de commettre une erreur de type II sera faible et celle de commettre une erreur de type I élevée (d'un niveau inacceptable). On trouvera ci-après quelques exemples.

TC/34/5 page 5

EXEMPLES

Exemple n° 1

16. L'expérience a montré que 1% est une norme raisonnable pour l'espèce en question. La norme de population est donc de 1%. On suppose aussi qu'il est procédé à un examen unique avec un maximum de 60 plantes. Sur la base des tableaux 4, 10 et 16, les schémas d'échantillonnage ci-après ont été obtenus :

Schéma	Taille de l'échantillon	Probabilité d'acceptation	Nombre maximum de plantes hors-type
a	60	90%	2
ь	53	90%	1
С	60	95%	2
d	60	99%	3

17. Sur la base des figures 4, 10 et 16, les probabilités ci-après ont été obtenues pour l'erreur de type I et l'erreur de type II, avec des pourcentages différents de plantes hors-type (ces pourcentages sont appelés P₂, P₅ et P₁₀ et correspondent, respectivement, à 2, 5 et 10 fois la norme de population).

Schéma	Taille de l'échantillon	Nombre maximum de plantes hors-type	Probabilité d'erreur			
			Type I		Type II	
				$P_2 = 2\%$	$P_5 = 5\%$	$P_{10} = 10\%$
a	60	2	2	88	42	5
b	53	1	10	71	25	3
c	60	2	2	88	42	5
d	69	3	0,3	97	65	14

18. Il ressort du tableau qu'il existe quatre schémas différents qu'il convient d'examiner pour déterminer si l'un d'entre eux peut être utilisé (les schémas a et c sont identiques car il n'existe aucun schéma, pour une taille d'échantillon de 60 plantes avec une probabilité d'erreur de type I comprise entre 5% et 10%). S'il est décidé de faire en sorte que la probabilité d'erreur de type I soit très faible (schéma d), la probabilité de commettre une erreur de type II sera très élevée (97, 65 et 14%) pour une variété comportant 2, 5 ou 10% de plantes hors-type, respectivement. On obtient le meilleur équilibre entre les deux types d'erreur en tolérant une plante hors-type dans un échantillon de 53 plantes (schéma b).

Exemple n° 2

- 19. Cet exemple porte sur une espèce, étant entendu que la norme de population a été fixée à 2% et que le nombre de plantes disponibles pour l'examen n'est que de 6.
- 20. Sur la base des tables et figures 3, 9 et 15, on obtient les schémas a à d suivants :

Sché- ma	Taille de l'échan- tillon	Probabilité d'acceptation	Nombre maximum de plantes hors-type	Probabilité d'erreur			
				Type I		Type II	
					$P_2 = 4\%$	$P_5 = 10\%$	$P_{10} = 20\%$
a	6	90	1	0,6	98	89	66
b	5	90	0	10	82	59	33
С	6	95	1	0,6	98	89	66
d	6	99	1	0,6	98	89	66
е	6		0	11	78	53	26

- 21. On obtient le schéma e du tableau en appliquant les formules 1) et 2) décrites plus loin dans le document.
- 22. Cet exemple illustre les difficultés auxquelles on se heurte lorsque la taille de l'échantillon est très petite. Dans tous les cas de figure, la probabilité d'accepter à tort une variété hétérogène est élevée. Même lorsque les cinq plantes doivent être homogènes pour que la variété puisse être acceptée (schéma b), la probabilité d'accepter une variété comportant 20% de plantes hors-type est encore de 33%.
- 23. Il est à noter que dans un schéma où les six plantes doivent être homogènes (schéma e), la probabilité d'erreur de type II baisse légèrement mais celle d'erreur de type I passe à 11%.
- 24. Toutefois, on peut considérer que le schéma e constitue la meilleure solution lorsque six plantes uniquement sont utilisées pour un examen unique portant sur une espèce dont la norme de population a été fixée à 2%.

Exemple n° 3

- 25. Dans cet exemple, nous reprenons la situation décrite à l'exemple n° 1, mais en partant du principe que les données portent sur deux années. La norme de population est de 1% et l'échantillon comprend 120 plantes (60 plantes par année).
- 26. Sur la base des tables et figures 4, 10 et 16, les schémas et les probabilités ci-après ont été obtenus :

Sché- ma	Taille de l'échan- tillon	Probabilité d'acceptation	Nombre maximum de plantes hors-type]	Probabilite	é d'erreur	
				Туре I		Type II	
					$P_2 = 2\%$	$P_5 = 5\%$	$P_{10} = 10\%$
a	120	90	3	3	78	15	<0,1
ь	110	90	2	10	62	8	<0,1
С	120	95	3	3	78	15	<0,1
d	120	99	4	0,7	91	28	1

- 27. Le schéma c, qui prévoit l'acceptation de trois plantes hors-type au total parmi les 120 plantes examinées à l'issue des deux années, permet d'obtenir le meilleur équilibre entre les deux types d'erreur.
- 28. Autre solution possible : procéder à un examen en deux étapes. Ce type d'examen peut être conduit en utilisant, dans ce cas, les formules 3) et 4) décrites plus loin dans ce document.

29. On obtient les schémas suivants :

Schéma	Taille de l'échantillon	Probabilité d'acceptation	Nombre le plus élevé pour l'acceptation après une année	Nombre le plus élevé avant le rejet en année 1	Nombre le plus élevé pour l'acceptation après deux années
е	60	90	jamais accepté	2	3
f	60	95	jamais accepté	2	3
g	60	99	jamais accepté	3	4
h	58	90	1	2	2

30. À l'aide des formules 3), 4) et 5), on obtient les probabilités d'erreur suivantes :

Schéma		Probabilité d'examen en deuxième année			
	Type I		Type II		
		$P_2 = 2\%$	$P_5 = 5\%$	$P_{10} = 10\%$	
е	4	75	13	0,1	100
f	4	75	13	0,1	100
g	1	90	27	0,5	100
h	10	62	9	0,3	36

31. Les schémas e et f (qui sont identiques) donnent une probabilité de rejet de 4% d'une variété homogène et une probabilité d'acceptation de 13% d'une variété comportant 5% de plantes hors-type. Les décisions à prendre sont les suivantes :

Ne jamais accepter la variété après une année

Plus de deux plantes hors-type en année 1 : rejeter la variété et arrêter l'examen De 0 à 2 (compris) plantes hors-type en année 1 : procéder à un examen en deuxième

De 0 à 2 (compris) plantes hors-type en année 1 : procéder à un examen en deuxième année

Trois plantes hors-type au plus après deux années : accepter la variété Plus de trois plantes hors-type après deux années : rejeter la variété.

- 32. On pourrait aussi opter pour le schéma h; le schéma g, quant à lui, semble présenter une trop grande probabilité d'erreur de type II par rapport à celle d'erreur de type I.
- 33. Le schéma h a l'avantage de permettre, dans de nombreux cas, qu'une décision définitive soit prise à l'issue du premier examen (première année) mais il présente une plus grande probabilité de commettre une erreur de type I.

Exemple n° 4

- 34. Dans cet exemple, nous partons du principe que la norme de population est de 3% et que nous disposons de huit plantes pour chacune des deux années.
- 35. Sur la base des tables et figures 2, 8 et 14, nous obtenons les schémas suivants :

Sché- ma	Taille de l'échantillon	Probabilité d'acceptation	Nombre maximum de plantes hors-type	Probabilité d'erreur			
				Type I		Type II	
					$P_2 = 6\%$	$P_5 = 15\%$	$P_{10} = 30\%$
a	16	90	1	8	78	28	3
ь	16	95	2	1	93	56	10
С	16	99	3	0,1	99	79	25

36. Le schéma a permet d'obtenir le meilleur équilibre entre les deux types d'erreur.

PRÉSENTATION DES TABLES ET FIGURES

- 37. Les tables 1 à 21 indiquent le nombre maximum de plantes hors-type et la taille de l'échantillon correspondant à différentes valeurs de la norme de population et de la probabilité d'acceptation dans le cadre d'un examen unique. On trouvera à la page suivante un tableau récapitulatif (tableau A) de ces tables et figures.
- 38. Pour chaque valeur de k (nombre maximum de plantes hors-type), on trouvera les valeurs limites correspondantes de n (taille de l'échantillon). Ainsi, dans la table 1, la fourchette indiquée pour la taille de l'échantillon est de 11 22 pour k = 2 et de 126 141 pour k = 10.
- 39. Pour les échantillons de petite taille, la même information est donnée sous la forme d'un graphique dans les figures 1 à 18; le risque effectif de rejeter une variété homogène et la probabilité d'acceptation d'une variété comportant une proportion réelle de plantes hors-type deux fois (2P), cinq fois (5P) ou 10 fois (10P) supérieure à la norme de population sont aussi indiqués (pour faciliter la lecture des figures, les risques correspondant aux diverses tailles d'échantillon sont reliés par des lignes bien que la probabilité ne puisse être calculée que pour chaque nombre entier correspondant à la taille d'échantillon).

Tableau A. Tableau récapitulatif des tables et figures 1 à 18.

Norme de population %	Probabilité d'acceptation %	Voir le tableau et la figure n°
10	>90	19
10	>95	20
10	>99	21
5	>90	1
5	>95	7
5	>99	13
3	>90	2
3	>95	8
3	>99	14
2	>90	3
2	>95	9
2	>99	15
1	>90	4
1	>95	10
1	>99	16
0,5	>90	5
0,5	>95	11
0,5	>99	17
0,1	>90	6
0,1	>95	12
0,1	>99	18

40. Pour utiliser les tables, la méthode suivante est proposée :

- a) Choisir la norme de population pertinente;
- b) Écrire les différents schémas de décision possibles (il s'agit des différentes combinaisons de tailles d'échantillon et de nombres maximum de plantes hors-type) ainsi que les probabilités de commettre une erreur de type I ou une erreur de type II, telles qu'elles apparaissent dans les figures.
- c) Choisir le schéma de décision qui permet d'obtenir le meilleur équilibre entre les probabilités d'erreur.
- 41. L'utilisation des tables et des figures est décrite dans la partie réservée aux exemples.

DESCRIPTION DÉTAILLÉE DE LA MÉTHODE À UTILISER POUR UN SEUL EXAMEN

- 42. En liaison avec les calculs mathématiques, qui sont fondés sur la distribution binomiale, les termes suivants sont couramment utilisés :
- a) La "norme de population" (ou norme nominale) est le pourcentage de plantes hors-type qui doivent être acceptées dans un cas particulier; elle est symbolisée par la lettre P.
- b) La "probabilité d'acceptation" est le probabilité d'accepter une variété comportant P% de plantes hors-type. Étant donné toutefois que le nombre de plantes hors-type est un nombre entier, la probabilité effective d'accepter une variété homogène sera toujours supérieure ou égale à la "probabilité d'acceptation". Cette probabilité d'acceptation est habituellement exprimée par 100 α , α représentant la probabilité de rejeter une variété comportant P% de plantes hors-type. Dans la pratique, de nombreuses variétés comportent moins de P% de plantes hors-type, de sorte que le risque d'erreur de type I sera inférieur à α pour ces variétés.
- c) La "taille de l'échantillon" est la taille de l'échantillon représentatif examiné; elle est symbolisée par la lettre n.
- d) Le nombre maximum de plantes hors-type dans un échantillon représentatif de taille n est symbolisé par la lettre k.
- e) La probabilité d'acceptation d'une variété comportant un pourcentage (P_q %) trop élevé de plantes hors-type est symbolisée par la lettre β ou par β_q .
- f) Les formules mathématiques permettant de calculer les probabilités sont les suivantes :

$$\alpha = 100 - 100 \sum_{i=0}^{k} \binom{n}{i} P^{i} (1 - P)^{n-i}$$
 (1)

$$\beta_q = 100 \sum_{i=0}^k \binom{n}{i} P_q^i (1 - P_q)^{n-i}$$
 (2)

P et P_q sont exprimés ici sous forme non fractionnaire, c'est-à-dire en pourcentages divisés par 100.

PLUS D'UN SEUL EXAMEN (ANNÉE)

- 43. Il arrive souvent qu'une variété candidate est cultivée pendant deux (ou trois) années. Il s'agit alors de savoir comment procéder pour regrouper les informations sur l'hétérogénéité dont on dispose pour chaque année. Deux solutions sont possibles :
- a) Prendre une décision après deux (ou trois) années sur la base du nombre total de plantes examinées et du nombre total de plantes hors-type enregistrées (il s'agit d'un examen combiné).
- b) Se fonder sur les résultats obtenus la première année pour déterminer si une décision (rejet ou acceptation) peut être prise. Si aucune décision ne peut être prise, procéder à un examen lors de la deuxième année au terme de laquelle une décision sera prise (il s'agit d'un examen en deux étapes).
- 44. Les deux méthodes précitées admettent toutefois des variantes (on peut, par exemple, prendre une décision chaque année et opter finalement pour le rejet de la variété candidate si celle-ci a comporté trop de plantes hors-type au cours des deux années (ou au cours de deux années sur trois)). De même, la réalisation d'un examen sur plus d'une seule année entraîne certaines complications. Il est par conséquent proposé de consulter un statisticien lorsqu'un examen sur deux années ou plus doit être effectué.

DESCRIPTION DÉTAILLÉE DES MÉTHODES POUR PLUS D'UN SEUL EXAMEN

Examen combiné

45. Soit n_i , la taille de l'échantillon utilisé pour l'examen i. Une fois le dernier examen effectué, la taille totale de l'échantillon est $n = \sum n_i$. Le schéma de décision est défini exactement de la même manière que si la taille totale de l'échantillon avait été obtenue au cours d'un examen unique. Par conséquent, le nombre total de plantes hors-type enregistrées au cours des examens peut être comparé au nombre maximum de plantes hors-type tolérées dans le cadre du schéma de décision choisi.

Examen en deux étapes

46. La méthode à utiliser pour un examen réparti sur deux années est la suivante : au cours de la première année, prélever un échantillon de taille n. Rejeter la variété candidate lorsque le nombre de plantes hors-type enregistrées est supérieur à r_1 et l'accepter lorsque le nombre de plantes hors-type enregistrées est inférieur à a_1 . La seconde année, prélever un échantillon de taille n (comme la première année) et rejeter la variété candidate lorsque le nombre total de plantes hors-type enregistrées au cours de l'examen réparti sur les deux années est supérieur à r. Si tel n'est pas le cas, accepter la variété candidate. Pour calculer les risques finals et la taille attendue de l'échantillon dans le cadre de cette méthode, procéder comme suit :

$$\alpha = P(K_1 > r_1) + P(K_1 + K_2 > r \mid K_1)$$

= $P(K_1 > r_1) + P(K_2 > r - K_1 \mid K_1)$

$$= \sum_{i=r_{i}+1}^{n} \binom{n}{i} P^{i} (1-P)^{n-i} + \sum_{i=a_{i}}^{r_{i}} \binom{n}{i} P^{i} (1-P)^{n-i} \sum_{j=r-i+1}^{n} \binom{n}{j} P^{j} (1-P)^{n-j}$$
 (3)

$$\beta_{q} = P(K_{1} < a_{1}) + P(K_{1} + K_{2} \le r \mid K_{1})$$

= $P(K_{1} < a_{1}) + P(K_{2} \le r - K_{1} \mid K_{1})$

$$= \sum_{i=0}^{a_{j}-1} \binom{n}{i} P_q^i (1 - P_q)^{n-i} + \sum_{i=a_j}^{r_j} \binom{n}{i} P_q^i (1 - P_q)^{n-i} \sum_{j=0}^{r-i} \binom{n}{j} P_q^j (1 - P_q)^{n-j}$$
(4)

$$n_e = n \left(1 + \sum_{i=a_I}^{r_I} \binom{n}{i} P^i (1 - P)^{n-i} \right)$$
 (5)

Étant entendu que

P = norme de population

 α = probabilité d'erreur effective de type I pour P

 β_q = probabilité d'erreur effective de type II pour q P

n_e = taille attendue de l'échantillon

r₁, a₁ et r sont des paramètres de décision

 $P_q = q$ fois la norme de population = q P

 K_1 et K_2 représentent le nombre de plantes hors-type enregistrées au cours des années 1 et 2, respectivement.

- 47. Les paramètres de décision a_1 , r_1 et r peuvent être choisis en fonction des critères suivants :
- a) α doit être inférieur à α_0 , α_0 représentant la probabilité maximum d'erreur de type I (dans la mesure où il est 100 fois inférieur à la probabilité d'acceptation requise);
 - b) β_5 doit être aussi petit que possible mais pas inférieur à α_0 ;
 - c) si $\beta_5 < \alpha_0$, n_e doit être aussi petit que possible.

48. Il existe d'autres méthodes pour lesquelles aucune table ni figure n'est reproduite dans le présent document car on pourrait avoir plusieurs schémas de décision différents pour un certain niveau de risque. Il est proposé de consulter un statisticien si on veut ou doit conduire un examen en deux étapes, ou tout autre examen séquentiel.

EXAMENS SÉQUENTIELS

49. L'examen en deux étapes susmentionné est un examen séquentiel dans lequel les résultats obtenus lors de la première étape permettent de décider si la seconde étape doit avoir lieu. D'autres types d'examen séquentiel peuvent être aussi utilisés. Ils servent, entre autres, à déterminer si les travaux permettent, à certains stades de l'examen, d'effectuer des analyses des plantes hors-type. Les schémas de décision découlant de ces analyses peuvent être établis de nombreuses manières différentes; aussi est-il recommandé de consulter un statisticien lorsqu'on souhaite recourir aux examens séquentiels.

NOTE RELATIVE AUX ERREURS DE TYPE I OU DE TYPE II

50. Le nombre de plantes hors-type étant un nombre entier, les erreurs de type I ne peuvent généralement pas correspondre à un chiffre rond prédéterminé. Le schéma a de l'exemple 2 (avec six plantes) a montré que la valeur de α ne peut pas être égale à 10%, sa valeur effective étant de 0,6%. Si l'on augmente la taille de l'échantillon, les valeurs respectives de α et de β varient elles aussi. La figure 3, par exemple, montre que α se rapproche de ses valeurs nominales à certaines tailles d'échantillon et que, à ces mêmes tailles, les valeurs de β sont relativement faibles. Elle montre aussi qu'il n'est pas toujours avantageux d'augmenter la taille de l'échantillon pour une probabilité d'acceptation déterminée. Ainsi, avec un échantillon de cinq plantes, $\alpha = 10\%$ et $\beta_2 = 82\%$ alors que, avec un échantillon de six plantes, $\alpha = 0,6\%$ et $\beta_2 = 98\%$. Les tailles d'échantillon pour lesquelles les valeurs α correspondent le mieux à la probabilité d'acceptation sont celles qui se rapprochent le plus de la borne supérieure dans l'intervalle des tailles d'échantillon pour un maximum spécifié de plantes hors-type. Par conséquent, il convient d'éviter les tailles d'échantillon les plus proches de la borne inférieure dans l'intervalle des tailles d'échantillon assorties d'un nombre maximum donné de plantes hors-type.

DÉFINITION DE TERMES ET SYMBOLES STATISTIQUES

51. Les termes et symboles statistiques utilisées ont les définitions suivantes :

Norme de population : pourcentage de plantes hors-type qu'il faudrait accepter si tous les individus d'une variété pouvaient être examinés. La norme de population est fixée pour l'espèce en question sur la base de l'expérience acquise.

Probabilité d'acceptation: probabilité d'acceptation d'une variété comportant P% de plantes hors-type, P étant la norme de population. Toutefois, la probabilité réelle d'acceptation d'une variété homogène sera toujours supérieure ou égale à la probabilité d'acceptation indiquée dans le titre des tables et figures. La probabilité réelle d'acceptation d'une variété homogène est indiquée dans les graphiques à l'aide du symbole. Les schémas de décision sont définis

de telle sorte que la probabilité réelle d'acceptation d'une variété homogène est toujours supérieure ou égale à la probabilité d'acceptation indiquée dans le titre de la table.

Erreur de type I: rejet à tort d'une variété homogène.

Erreur de type II: acceptation à tort d'une variété trop hétérogène.

P: norme de population

 P_q : pourcentage de plantes hors-type dans une variété hétérogène considéré comme exact. $P_q = q P$.

n: taille de l'échantillon

k: nombre maximum de plantes hors-type tolérées

α: probabilité d'erreur de type I

β : probabilité d'erreur de type II

974- 992

993-1010

58 59

TABLES ET FIGURES

Table et figure 1 : Norme de population = 5%

Probabilité d'acceptation ≥90%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type

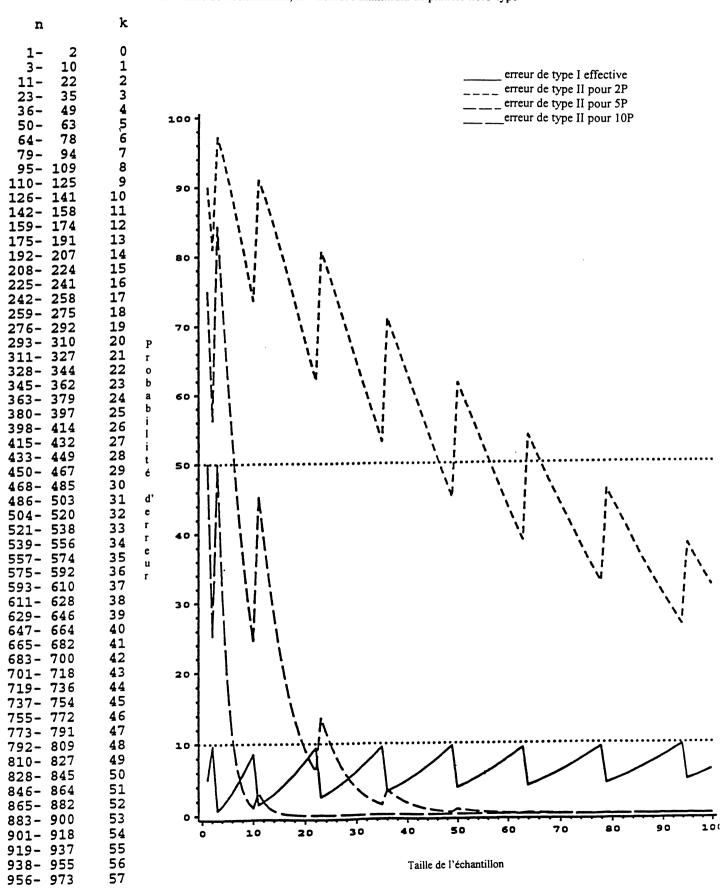


Table et figure 2 :

Norme de population = 3% Probabilité d'acceptation ≥90%

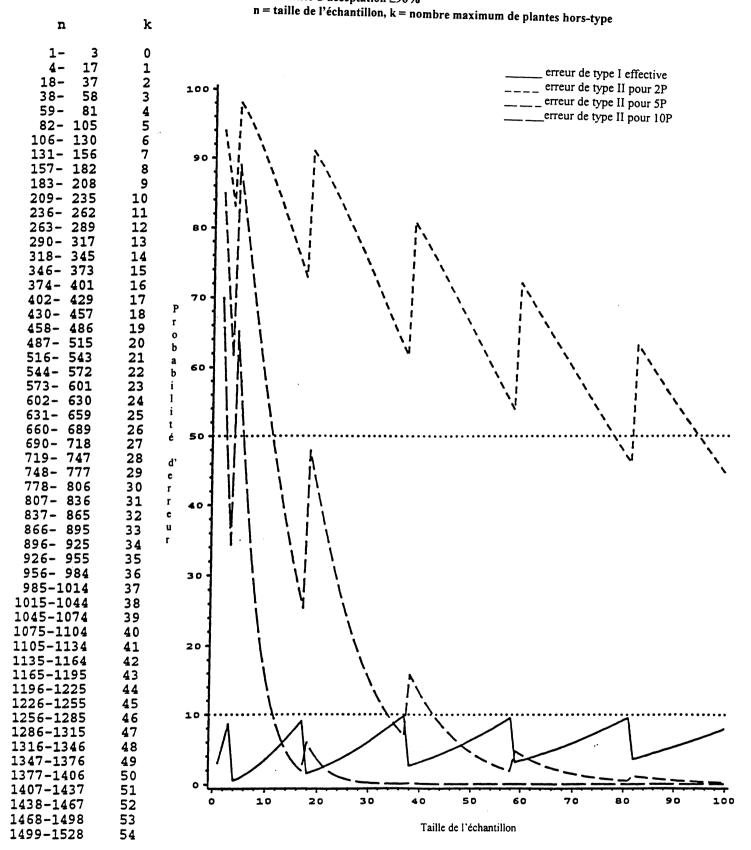


Table et figure 3:

Norme de population = 2% Probabilité d'acceptation ≥90% n = taille de l'échantillon, k = nombre maximum de plantes hors-type

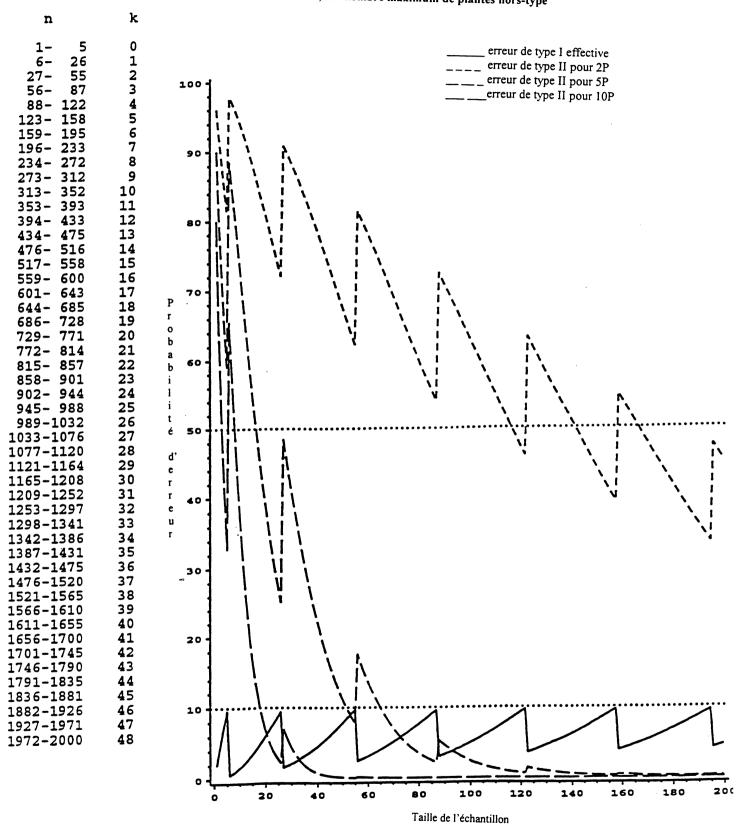


Table et figure 4:

Norme de population = 1% Probabilité d'acceptation ≥90% n = taille de l'échantillon, k = nombre maximum de plantes hors-type

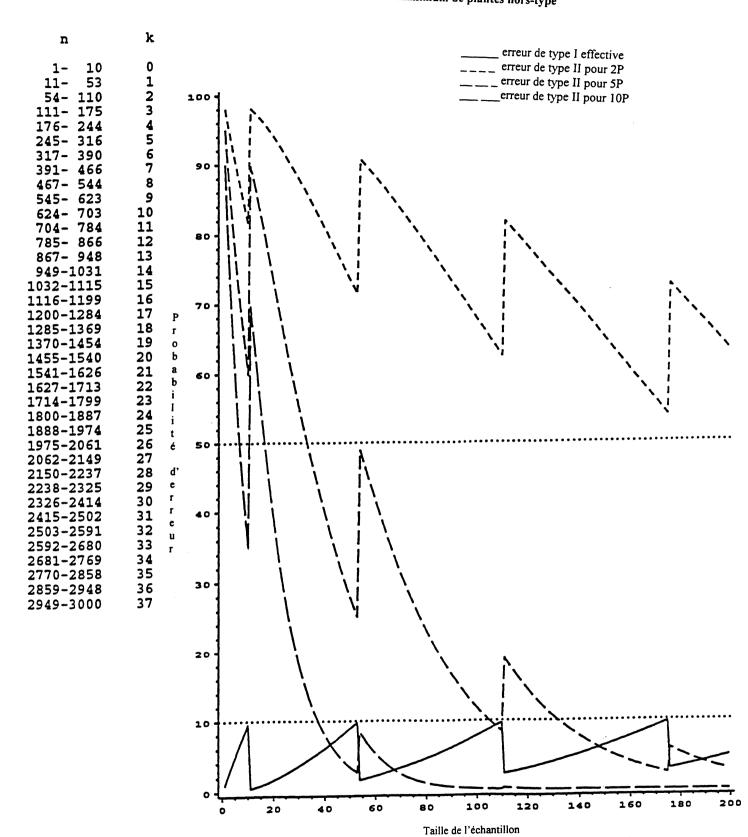
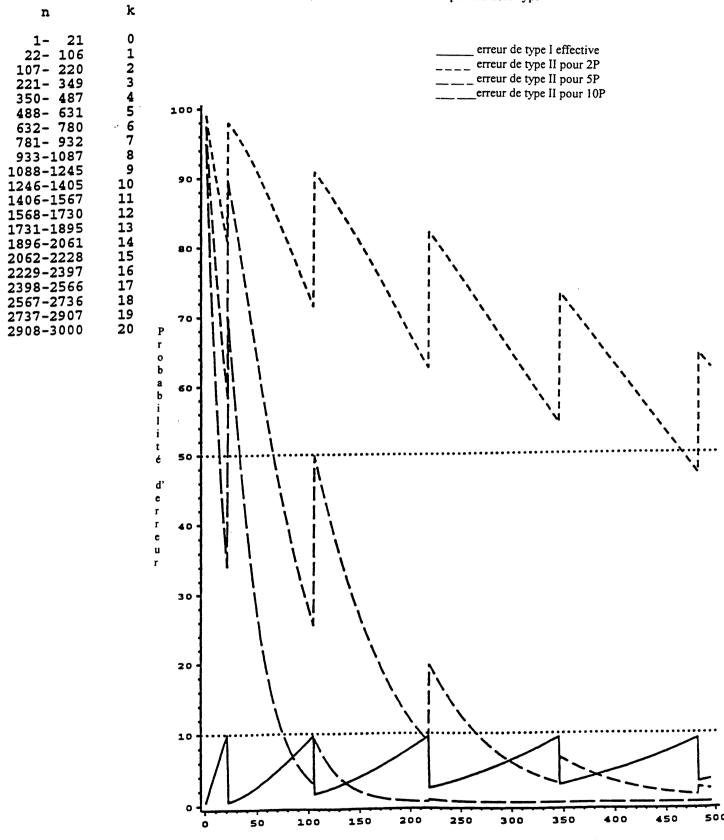
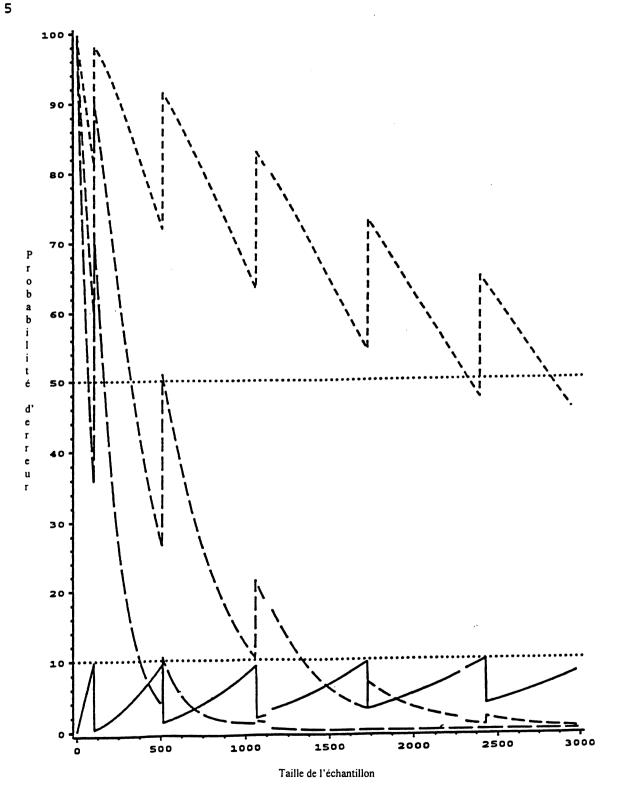



Table et figure 5 :

Norme de population = 0,5%

Probabilité d'acceptation ≥90%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type



Taille de l'échantillon

Table et figure 6 :

Norme de population = 0,1% Probabilité d'acceptation \geq 90% n = taille de l'échantillon, k = nombre maximum de plantes hors-type

n	k	
1- 105 106- 532 533-1102 1103-1745 1746-2433 2434-3000	0 1 2 3 4 5	erreur de type I effective erreur de type II pour 2P erreur de type II pour 5P erreur de type II pour 10P

59

60

61

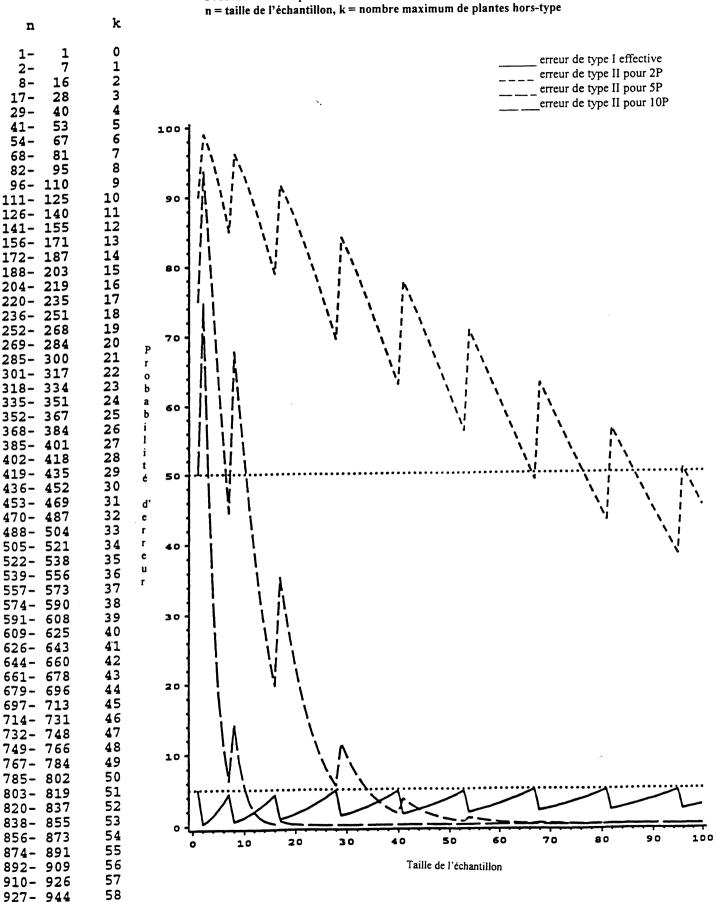
945- 962

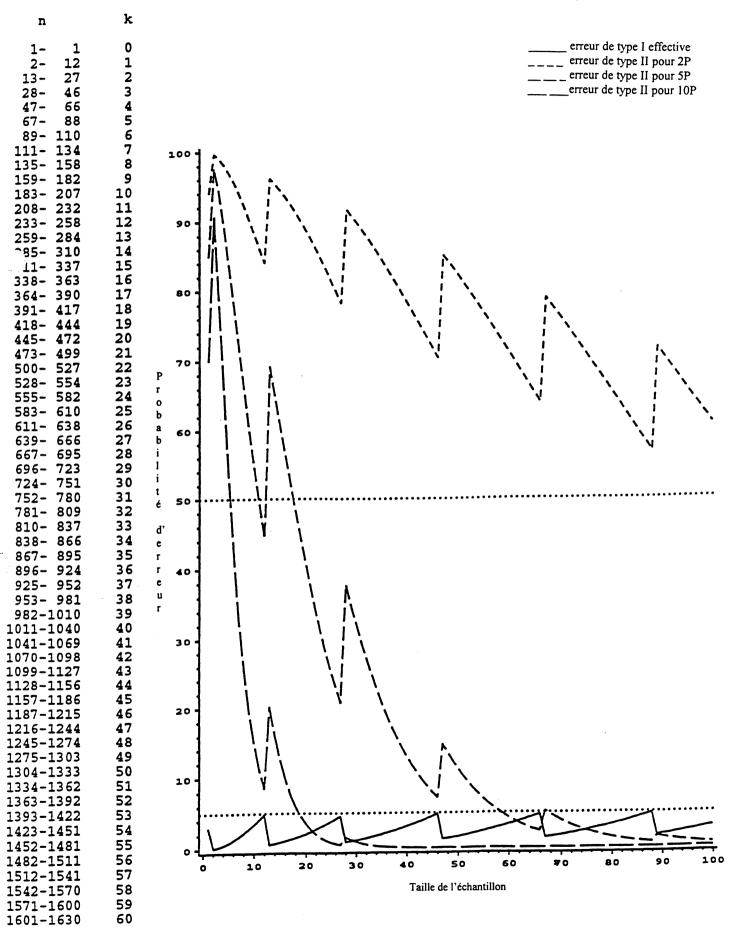
963- 980

981- 998

Table et figure 7 : Norme de population = 5%

Probabilité d'acceptation ≥95%




Table et figure 8 :

1631-1660

61

Norme de population = 3% Probabilité d'acceptation ≥95%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type

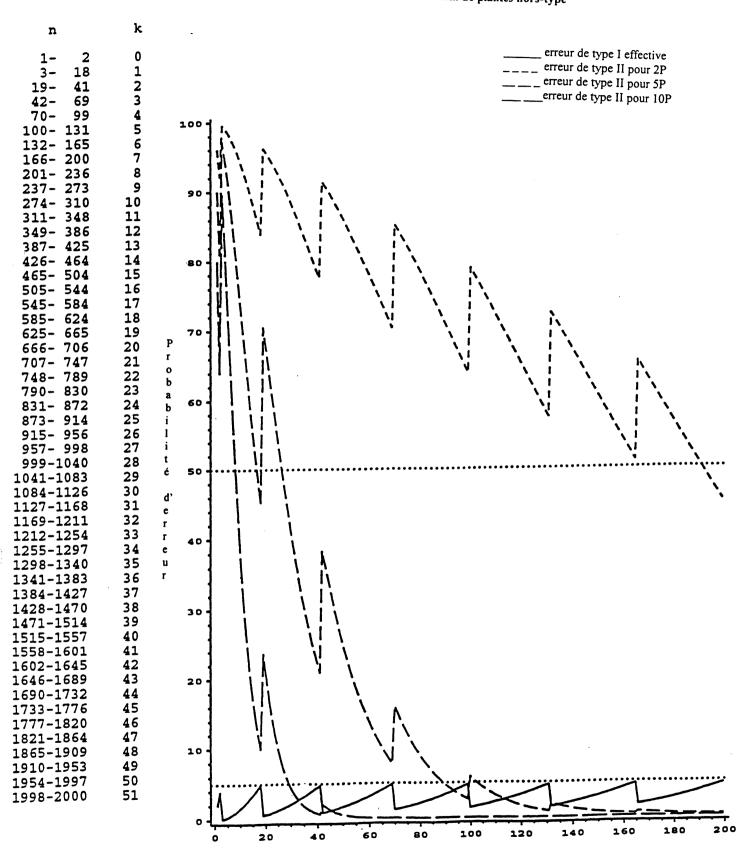
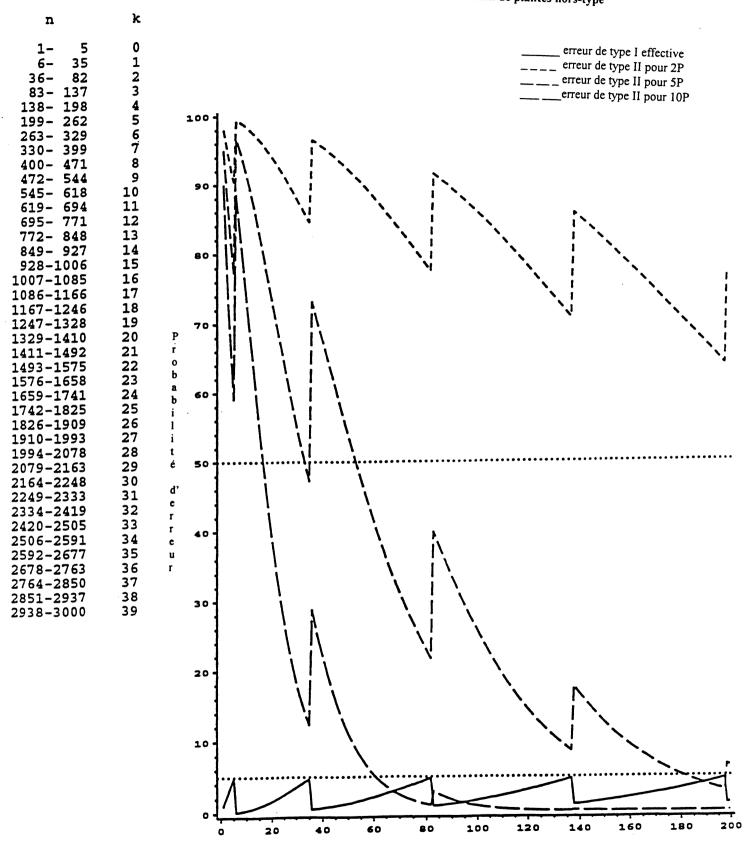


Table et figure 8, suite

1661-1690	62
1691-1720	63
1721-1750	64
1751-1780	65
1781-1810	66
1811-1840	67
1841-1870	68
1871-1900	69
1901-1930	70
1931-1960	71
1961-1990	72
1991-2000	73

Table et figure 9 :


Norme de population = 2% Probabilité d'acceptation ≥95% n = taille de l'échantillon, k = nombre maximum de plantes hors-type

Taille de l'échantillon

Table et figure 10 :

Norme de population = 1% Probabilité d'acceptation ≥95% n = taille de l'échantillon, k = nombre maximum de plantes hors-type

Taille de l'échantillon

450

400

Table et figure 11 : Norme de population = 0.5%Probabilité d'acceptation ≥95% n = taille de l'échantillon, k = nombre maximum de plantes hors-type k n 0 1-10 erreur de type I effective 71 1234567 11erreur de type II pour 2P 72- 164 erreur de type II pour 5P 165- 274 erreur de type II pour 10P 275- 395 396- 523 524- 658 659- 797 8 798- 940 941-1086 9 10 1087-1235 11 12 13 1236-1386 1387-1540 1541-1695 1696-1851 14 15 16 17 852-2009 2010-2169 2170-2329 18 2330-2491 19 2492-2653 20 2654-2817 21 2818-2981 P 2982-3000 22 r 0 b a 60 b 1 i t é 50 ď е r 40 c u 30 20

10

Taille de l'échantillon

250

300

350

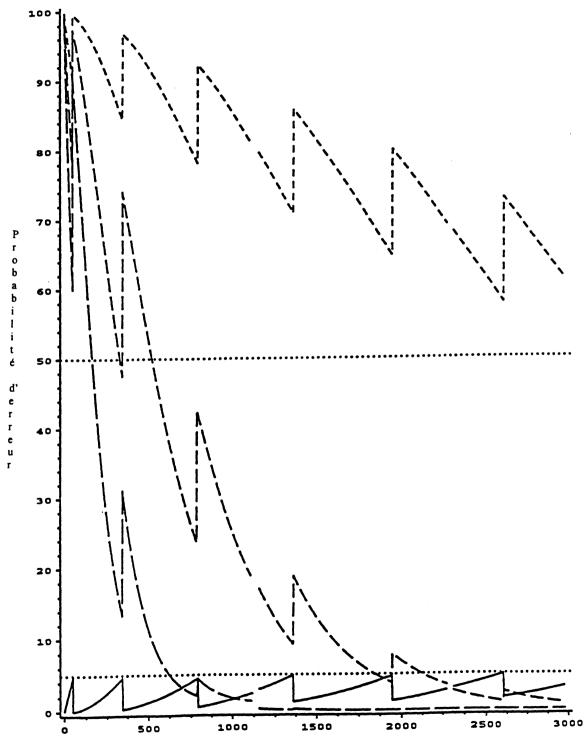
200

150

100

50

TC/34/5 page 28

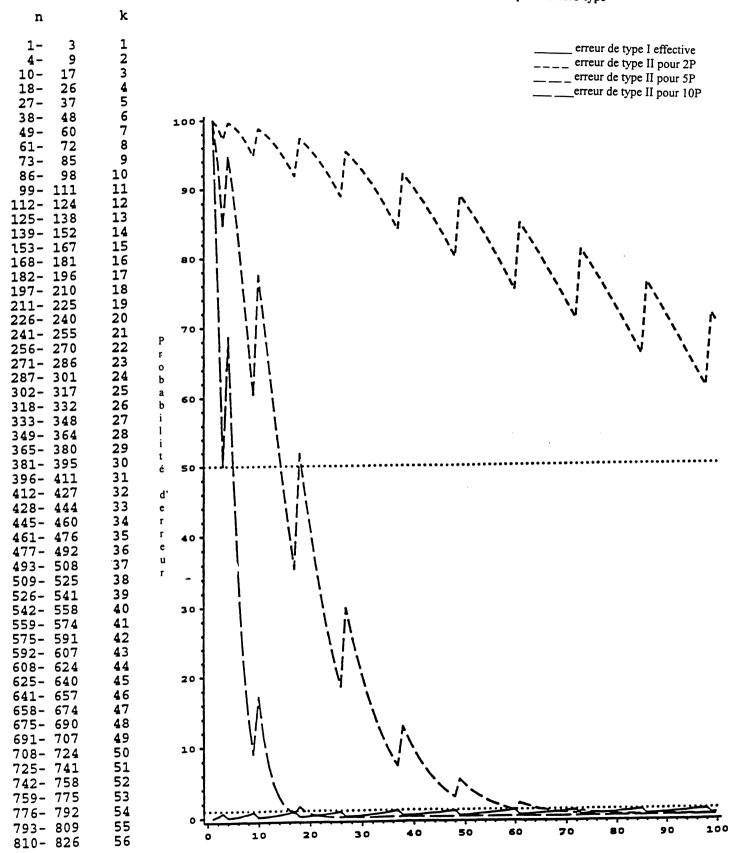

Table et figure 12 :

Norme de population = 0,1%

Probabilité d'acceptation ≥95%

n = taille de l'échantillon, k = nombre maximum de plantes hor

n	k	be to the state of	
1- 51	0		
52- 355	1	erreur de type I effective	
356- 818	2	erreur de type II pour 2P	
819-1367	3	erreur de type II pour 5P	
1368-1971	4	erreur de type II pour 10P	
1972-2614	5		
2615-3000	6 .		



Taille de l'échantillon

Table et figure 13:

Norme de population = 5% Probabilité d'acceptation ≥99%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type

Taille de l'échantillon

Table et figure 13, suite

n	k
827-843 844-877 878-894 912-945-9945 946-979-980-979-998-10131 1032-1048 1049-1066 1067-1083 1049-1066 1067-1083 1049-1187 1136-1153 1154-1170 1171-1187 1188-1205 1206-1222 1223-1240 1241-1257 1276-1292 1231-1327 1328-1345 1346-1362 1363-1380 1381-1399-1415 1452-1468 1487-1504 1505-1521 1522-1539 1540-1557 1558-1574 1575-1610 1611-1628 1646-1663 1664-1663 1664-1663 1664-1663 1664-1663 1664-1681 1700-1717 1718-1734 1735-1752 1753-1770 1771-1788 1789-1806	7890123456789012345678901234567890123456789012311111111111111111111111111111111111

Table et figure 14:

61

1485-1513

Norme de population = 3% Probabilité d'acceptation ≥99%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type

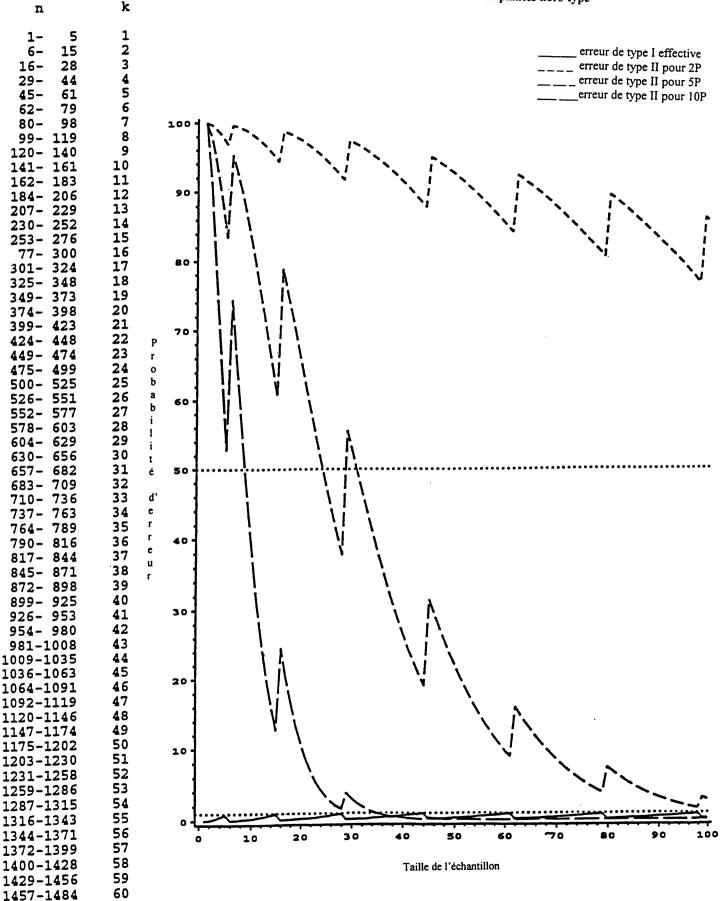
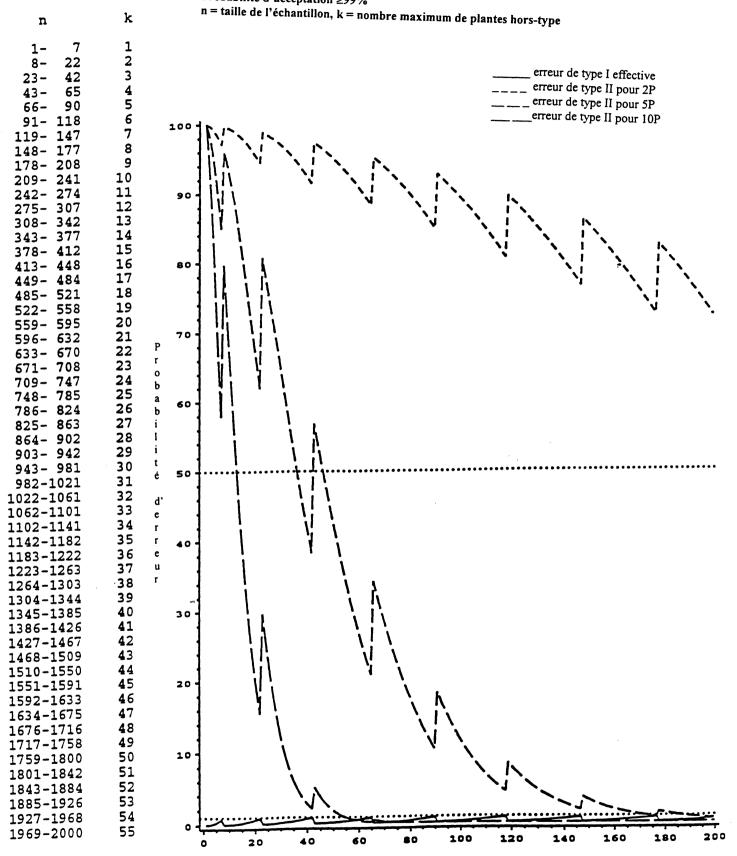
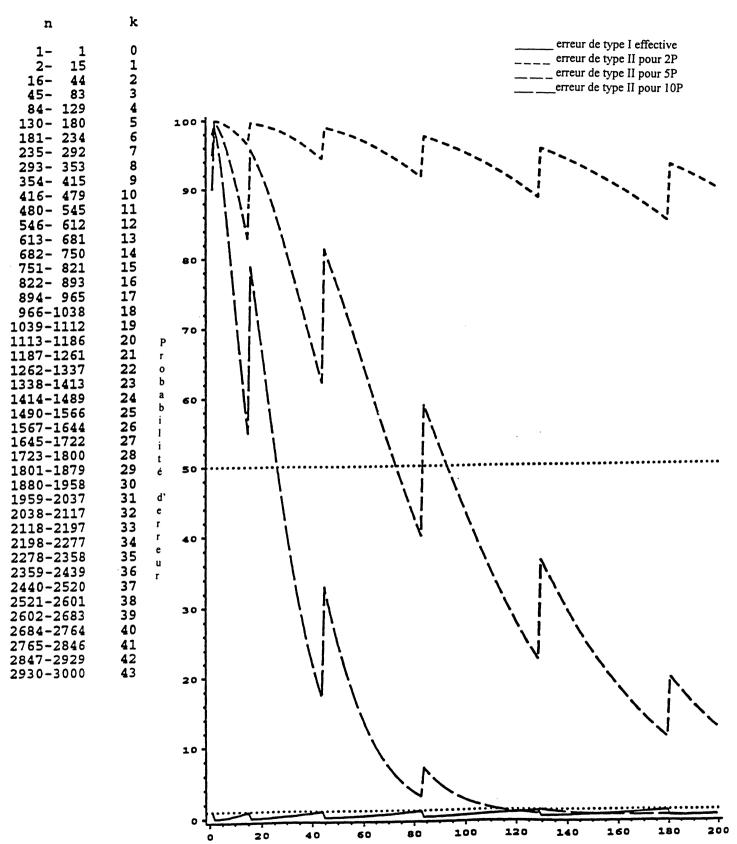



Table et figure 15:

Norme de population = 2% Probabilité d'acceptation ≥99%



Taille de l'échantillon

Table et figure 16:

Norme de population = 1% Probabilité d'acceptation ≥99%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type

Taille de l'échantillon

Table et figure 17:

0

Norme de population = 0,5% Probabilité d'acceptation ≥99%

n = taille de l'échantillon, k = nombre maximum de plantes hors-type k n 0 2 1erreur de type I effective 1 2 3 3-30 31-87 __ erreur de type II pour 2P 88- 165 erreur de type II pour 5P **4** 5 erreur de type II pour 10P 166- 257 258- 358 67 359- 467 468- 583 8 584- 703 9 704- 828 10 829- 956 11 957-1088 12 1089-1222 13 1223-1359 14 1360-1498 80 15 1499-1639 16 1640-1782 17 1783-1926 18 1927-2072 19 0 2073-2220 20 21 22 23 2221-2369 r 2370-2519 0 2520-2670 b a 2671-2822 24 2823-2975 b 25 2976-3000 50 ď e r 40 е u 30 20 10

Taille de l'échantillon

250

200

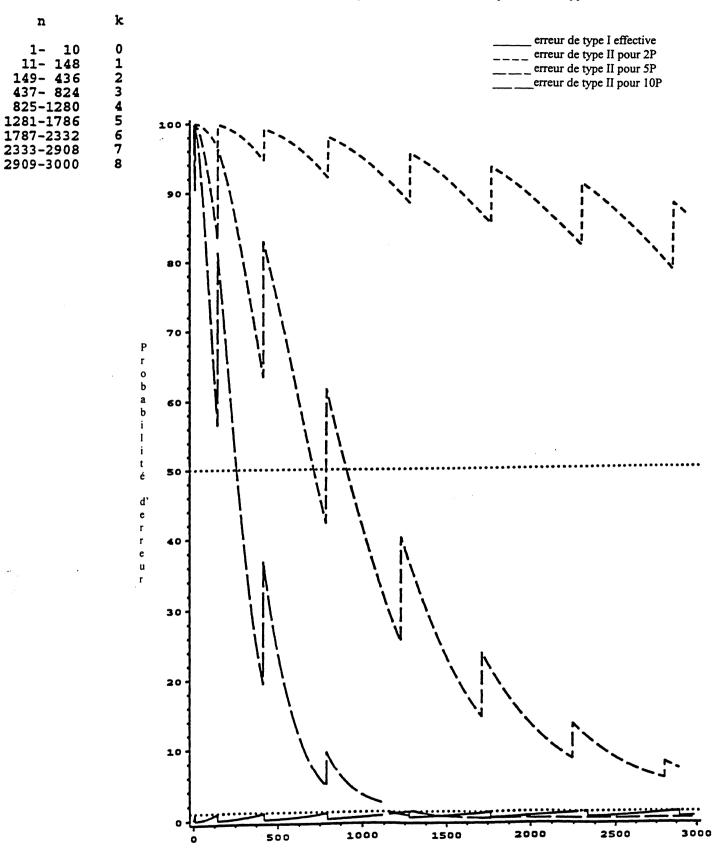
150

100

50

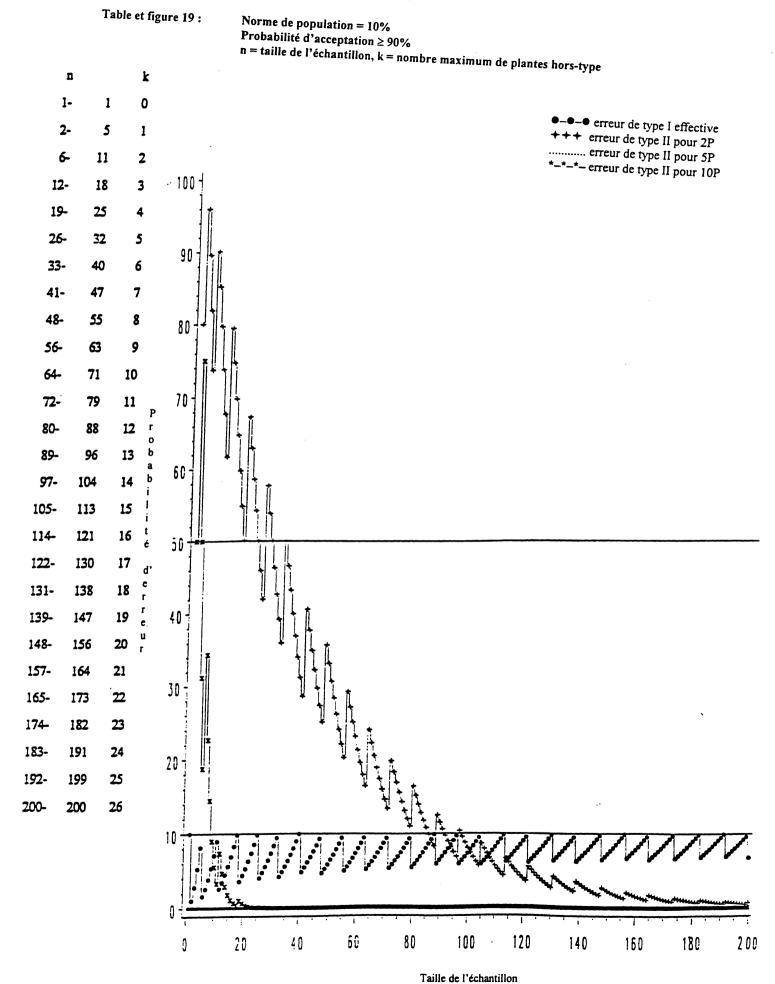
300

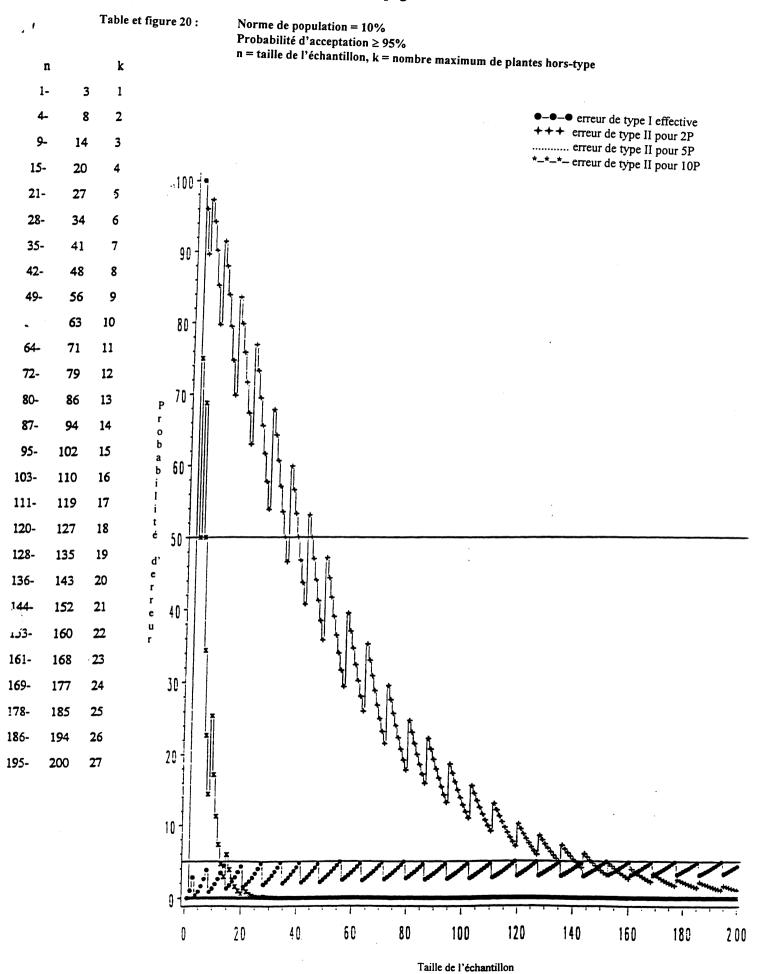
350

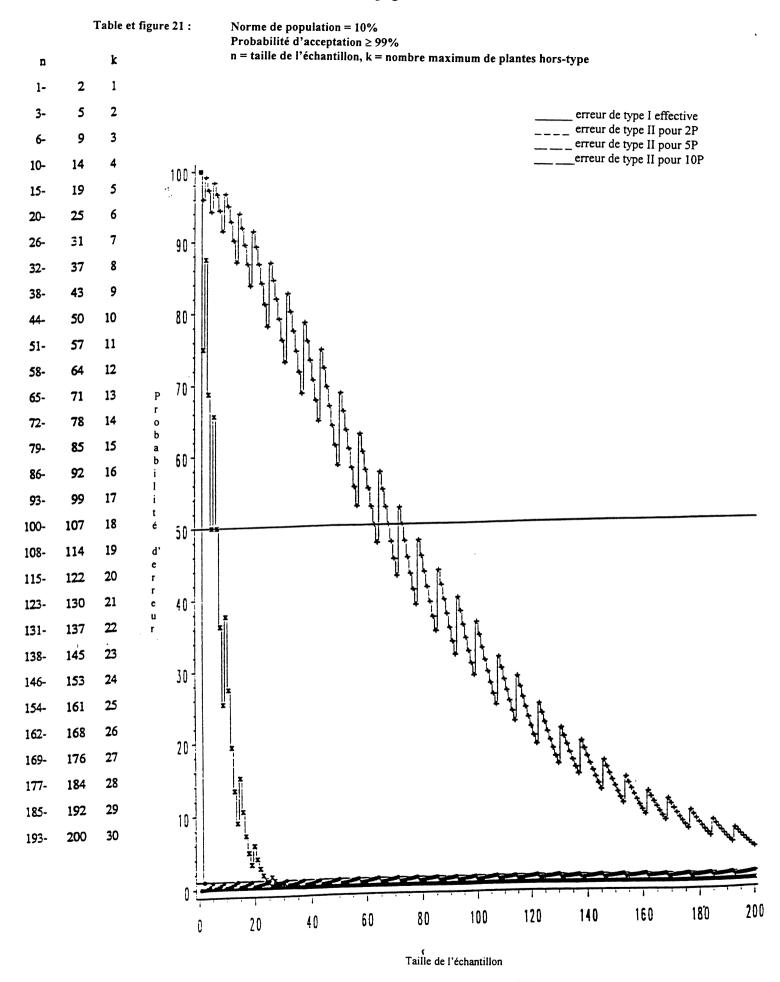

400

450

Table et figure 18 :


Norme de population= 0,1% Probabilité d'acceptation ≥99%


n = taille de l'échantillon, k = nombre maximum de plantes hors-type



Taille de l'echantillon

TC/34/5 page 36

[Fin du document]