Breeding programs to mitigate climate change and environment pressures on crops

Dave Bubeck, Research Director – Seed Product Development, Corteva Agriscience

UPOV - Seminar on the role of plant breeding and plant variety protection in enabling agriculture to mitigate and adapt to climate change

October 11, 12, 26; 2022
Dear Mr. Baker,

I think I can send you some hybrid strains of corn all right, but before sending them I would like to know just what kind of a plot you have. Do you have a half acre which is at least 500 feet away from any other corn, where there would not be much chance for pollen from other corn coming in on it? If so, I would suggest that you use the detasseling method. I would send you one sort to use as a male parent and thirty or forty other sorts to use as female parents. I would want you to plant about twenty hills each of these different female parents. We would then take four points of each of these different combinations and enter them in the Iowa Corn Yield Contest in the spring of 1927. We can enter these combinations in the name of Baker and Wallace if you so desire.

If you take on this project, you will of course have to arrange to plant the corn with some care so you know in which row each of the different strains is planted and then in July you will have to arrange to pull the tassels out every day, and in late September or early October you will have to harvest the different sorts and label them. It is quite a little job.

Write me further on the matter as to just how you want to go ahead with this proposition. If you happen to be coming down to Des Moines at any time, let me know in advance and drop around to the office.

Sincerely yours,

H. A. Wallace

March 10, 1926

Mr. Raymond Baker,
G. D. Station A,
Ames, Iowa.

Beechfield, Iowa
July 15, 1926

Mr. H. A. Wallace

Dear Mr. Wallace:

Our corn is doing fine, and I am having a lot of fun pulling out the tassels. I have already pulled out about half the tunnels. Some of the mother parents are so tall (over 8 ft) that I need a step-ladder to reach the tassels.

Raymond Baker
Acreage impact of corn breeding and improved management practices
The Breeding Pipeline - Conduct pre-commercial product testing in target environments for multiple years.
Genetic variation – trends over time

• Genetic variation is essential to achieve breeding goals

• Co-ancestry based – pedigree and/or genotype

• Allelic diversity – driven by population sizes in breeding programs
Maize Breeding – highly complex trait selection needs
Genetic gain for any of these traits requires favorable variation and response to
long-term selection, adding patience and adjusting breeding goals as the
environmental pressures change over time

<table>
<thead>
<tr>
<th>Agronomics</th>
<th>Pest Resistance</th>
<th>End-Use Traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>Gray leaf spot</td>
<td>Mycotoxin Production in Grain</td>
</tr>
<tr>
<td>Test weight</td>
<td>Northern leaf blight</td>
<td>Starch, Protein, & Oil</td>
</tr>
<tr>
<td>Grain moisture</td>
<td>Southern leaf blight</td>
<td>Extractable starch</td>
</tr>
<tr>
<td>Grain dry-down</td>
<td>Stewart’s wilt</td>
<td>Total fermentables</td>
</tr>
<tr>
<td>Stalk lodging</td>
<td>Rusts</td>
<td>Gross energy</td>
</tr>
<tr>
<td>Root lodging</td>
<td>Smuts</td>
<td>Digestible energy</td>
</tr>
<tr>
<td>Plant height</td>
<td>Anthracnose</td>
<td>Food-grade Traits</td>
</tr>
<tr>
<td>Ear height</td>
<td>Diplodia</td>
<td>Silage quality traits</td>
</tr>
<tr>
<td>Brittle snap</td>
<td>Giberella</td>
<td></td>
</tr>
<tr>
<td>Drought tolerance</td>
<td>Fusarium</td>
<td></td>
</tr>
<tr>
<td>Emergence</td>
<td>Diplodia</td>
<td></td>
</tr>
<tr>
<td>Stand establishment</td>
<td>Bacterial wilt</td>
<td></td>
</tr>
<tr>
<td>Early growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold tolerance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Native Genetics and CRISPR approach to Disease Control

- **100% A**
 - Lower quality plant
 - Disease resistant

- **100% B**
 - Higher quality plant
 - Disease sensitive

\[\text{Disease Resistance} \]

\[\text{No unintended donor genetics} \]

\[\text{100% high quality plant} \]

\[\text{Improved resistance to Disease} \]
Accelerating Native Genetics for Disease Control

Plant Disease is a Major Challenge for Growers

In 2021, North American corn growers lost more than 318 MM bu\(^1\) due to:

- Northern Leaf Blight
- Southern Rust
- Gray Leaf Spot
- Anthracnose Stalk Rot

Our Patent-Pending Approach

Many Genes, Many Locations, Imprecise Gene Information

- Builds off germplasm advantages and improves genetic gain
- New breeding techniques unlock additional power of native genetics
- Multiple disease targets

Many Genes, Single Location, Precise Gene Information

- Multiple native genes for each disease target improves resistance and adds durability
- Simplified genetics assembled through gene editing accelerates plant breeding

LATE DECADE
Genome editing and future potential – what if we could...go beyond plant breeding techniques and exceed current range of variation

- Chromosomal rearrangements (CR’s) and potential to change phenotypes and “unlock” genetic variation (https://www.nature.com/articles/s41477-020-00817-6)
- Effective control of genomic recombination elements
- Enable co-location of native traits, unleashing major portions of the genome for improved maintenance of genetic diversity and additional favorable trait selection
- Multiple and simultaneous edits across numerous traits
Will Genome Editing reside on this chart in 2070?
Key Points

• Conduct plant breeding and pre-commercial product testing in the target environments for multiple years

• Genetic variation is essential to achieve breeding goals and mitigate climate change
 • Account for inevitable diversity decline over time
 • Leverage science and technology to create new favorable variation

• Plant breeding requires long-term selection, patience and adjusting breeding goals as the environmental pressures change over time

• Genome editing methods have potential for creating additional and needed variation to accomplish future environmental needs to feed a growing population

• Increased progress to minimize or eliminate biotic and abiotic stresses enables increased heritability and selection efficiency for grain yield improvement
Thank you!