

ADVANCES IN THE DEVELOPMENT OF NEW VARIETIES BETTER ADAPTED TO CLIMATE CHANGE IN CROPS AND FORAGES: A SOUTH AMERICAN PERSPECTIVE

UPOV SEMINAR, OCT.'2022

Dr. Fernando Ortega Klose <u>fortega@inia.cl</u>

INIA IS THE MAIN AGRICULTURAL RESEARCH INSTITUTE IN CHILE, WHICH BELONGS TO THE MINISTRY OF AGRICULTURE

INIA was established in 1964.

 National coverage throughout its 10 regional research centers, experimental centers, technical offices, labs and gene banks.

- 5.1 million ha. of arable land in a territory of 75 million ha.
- Population: 17,248,450 (13% rural)

North: Desert

West: Pacific Ocean

Diversity of climates: diversity of production

GEOGRAPHY AND CLIMATES

East: Andean Mountain Range

South: Southern Ice

NUMBER OF VARIETIES IN THE CHILEAN RVP BY ORIGIN (July 2022)

MOST VARIETIES ARE INTRODUCED

AGRONOMIC EVALUATION OF VARIETIES IS NOT COMPULSARY IN CHILE

PLANT GROUP	TOTAL	INRODUCED	CHILEAN	INIA
FRUIT CROPS	707	672	35	4
FIELD CROPS	125	72	53	33
ORNAMENTAL	45	44	1	0
VEGETABLES	19	18	1	1
FORAGES	11	8	3	3
FORESTRY	10	8	2	0
ORNAMENTAL	45	44	1	0
TOTAL	917	822	95	41

Source: Adapted from Servicio Agrícola y Ganadero (Chile) information.

Temperature increases between 2 and 4 ° C are estimated across the country by the end of the century

Considerable reduction in the Andean area capable of storing snow is estimated

An estimated reduction of water available for irrigation and considerable increase in the number of months with water deficit

RAINFALL AT CARILLANCA RESEARCH CENTER, CHILE (38°41'S, 72°25'W)

Year

October to March

CARILLANCA RESEARCH CENTER, CHILE (38°41'S, 72°25'W)

SCREENING OF ADVANCED LINES FOR WATER STRESS (WHEAT, OAT, RICE, FORAGES, POTATOES, MURTILLA, QUINOA, LUPIN..)

75% of inigati on water applic	0% of irigati on water applic ation	100% of irrigati on water applic	50% of irrigat on water
		ation	ation

ROOT PHENOTYPING AND PHYSIOLOGICAL EVALUATION

Photos: Dr. Luis Inostroza, INIA.

AVERAGE FORAGE YIELD OF RED CLOVER AT CARILLANCA STATION

Adapted from: Fernando Ortega, Leonardo Parra, and Andrés Quiroz. 2014. Breeding red clover for improved persistence in Chile: a review. Crop & Pasture Science. DOI: 10.1071/CP13323

Collection (1994-96)

Charac., evaluation and selection (1998-2001)

Commercial seed production

THE LONG WAY TO BREED THE FIRST TWO CHILEAN BROMUS VALDIVIANUS VARIETIES

Breder seed increase (2001-2002)

Evaluation, cuttinggrazing (2001-2007)

Farmer's utilization

PERFORMANCE OF A SELECTED NATIVE BROME GRASS CULTIVAR, COMPARED TO PERENNIAL RYEGRASS DURING THREE GROWING SEASONS

Period with water deficit and higher temperatures

Period with no water deficit and moderate temperatures

Martinez et al. 2021. Evaluating the drought tolerance of seven potato varieties on volcanic ash soils in a médium-term trial. Frontiers in Plant Science, DOI: 10.3389/fpls.2021.693060.

Plant breeding is essential for adaptation to climate change.

>For this purpose, it is fundamental to strengthen national breeding for local adaptation.

and budget.

FINAL REMARKS

> Even with the incorporation of new techniques, "breeding time" requires a medium to long term vision

