

Use of new technologies (molecular markers and speed breeding) in the development of drought-tolerant wheat varieties in Morocco

UPOV seminar 11-12 October 2022

Dr. Moha Ferrahi Head, Breeding and Genetic Resources Conservation Department Scientific Division, National Institute for Agricultural Research

Drought and its consequences on crop establishment in Morocco

Impact of Climate Change in Morocco

Impact of climate change: reduction of 30 % of cereal area in Morocco by 2050

Cereal Production in Morocco

Cereal Production 2015-2021 (1,000 T)

■ BT ■ BD ■ Orge ■ Mais ■ Total

- Cereal Production is linked to rainfall, there is big fluctuation from year to year (last 3 years)
- In 2021-2022: similar to 2019-2020 with a production of 3,4 million T
- Area: 4,3 million ha (2020-2021)

140000

- Average yield: 1,6 T/ha to 2,5 T/ha (2009-2021)
- Yield potential: 3-5 T/ha pilot farmers and in experimental station

More than a century in Cereal breeding in Morocco

Item	Value
Scientists involved	30
Support Staff	>70
Allocated area for trials each year	>200 ha
Released varieties since 1980	120
Market share of INRA varieties	15-58%

Average Annual Genetic Gain: 0.1 T/yr

- Fully irrigated or supplemented (10% area):
 - ✓ 3 Rusts and Septoria, tan spot and quality
- Humid and sub-humid (>450 mm, 40% area):
 - ✓ Drought, heat, septoria, leaf and yellow rusts
- Semi-arid and arid (250 to 300 mm, 40% area):
 - ✓ Drought, leaf rust and Hessian fly
- High altitude (350 600, 10% area):
 - ✓ Drought, cold, frost, yellow rust, stem rust and TS

>10,000 Experimental plots for breeding each year

المعهد الوطني للبحث الزراعي ٥٤٥،X هادلا0 ا ٢٥٣٣٤ ا ١٥٤٤٥٨ Institut National de la Recherche Agronomique

لجيل الأخضر

GÉNÉRATION GREEN

- Selection in different environments across the country
- Screening for major diseases and abiotic stresses
- More than 800 International lines evaluated each year
- Use of commercial varieties for comparison
- Use latest experimental analysis and genomics for MAS

Improving agronomic water productivity (WUE)

- ✓ The water productivity in the rainfed areas is very low (ranges from 0.506 Kg/m3 in good years to 0.149 g/m3 in dry season). Overall the water productivity varied between 1.15 Kg/m3 for Doukkala region and 3 Kg/m3 for Tadla region in Morocco (Balaghi et al., 2014);
- ✓ On the average, the varieties released by INRA have a water productivity of about 2.27 kg/m3 (Ferrahi, 2020), which is comparable to Australian varieties that are known to be drought tolerant.

Prebreeding effort for Drought tolerant germplasm development

□ Interspecific hybridization for the transfer of Hessian fly resistance from wheat wild relatives to cultivated wheat Crosses between durum wheat and *Triticum dicoccoides*

□ New interspecific hybrids were obtained from cross between cultivated barley and tetraploid *Hordeum bulbosum*

Use of Advanced technologies in cereal breeding

Use of innovative technologies such as

- Powerful tools in experimentation and data analysis;
- Use of speed breeding techniques/DH;
- Use of genomic as MAS;
- High throughput phenotyping to study abiotic stress;
- Use of drones to estimate yield;
- Taking into account the industry and end-use requirements;
- Farmers involvement for selection preferences ;
- Climatic changes;

. . .

Application of Tilling and Irradiation to Create New Genetic Resources and Selection of Adapted Lines in Wheat

Creation of a mapping population from commercial durum and bread wheat varieties using nuclear irradiation (EMS) and selection of mutants with :

Good Drought and Salt tolerance;

High yield as compared to commercial varieties;

✓ Good tolerance to main wheat diseases.

- ✓ Interspecific cross: Amedakul/T. dicoccoides Syr//Loukus
- ✓ Released in 2018 by INRA Morocco as 'Nachit'
- ✓ Released for its drought tolerance and large grains

- Nachit produced <u>15% more yield</u> across five seasons
 - 24% and 36% in dry years
- It has 10% larger grains
- Resistant to *RR, LR, SR, <u>but not to</u>* <u>*HF*</u>
- Where does its drought tolerance come from?

- ✓ The durum variety Nachit produced 15% more grain yield in 5 seasons and 24% and 36% more in two dry years.
- ✓ The drought resistance comes from a good root development with the identification of 3 QTLs that allow an increase of +300 kg/ha alone.

Where does come a drought-resistant durum wheat variety Nachit?

Three QTLs controls root angel and together increase yield +300 Kg ha⁻¹

Durum wheat variety Nachit on farm drought tolerance

The deep roots of Nachit gave it +38% yield advantage under drought when tested across 19 farms in 2019-2020, and it has +15% larger grains.

Heat tolerance: the secret of spike fertility

- Application of plastic tunnels at the time of flowering +10 C
- Grain number per spike (fertility) seems to be the most critical trait

KASP marker validated for heat tolerance

- 2 QTLs for spike fertility
- GY across 3 heat stressed env:
 - +500 Kg ha⁻¹ (20%) on average

El Hassouni et al. 2019 Doi: 10.3390/agronomy9080414

Two new HF resistant candidates to the catalougue

Two new entries superior to Nachit (Gigamor and Zeina) were presented by Dr Ferrahi

- These combine 3 roots QTL for yield under drought, 1 QTL for HF resistance, and top quality
- In HF years the yield advantage is *almost double!!!*

- 1. More droughts:
 - Deeper roots + grain weight
 - Spike per m²
- 2. More heat waves:
 - Higher spike fertility .
- 3. Shorter growing seasons:
 - Early flowering •
- 4. Damaging pests and disease:
 - Rusts (stem and leaf) .
 - Hessian fly 0
 - Fusarium(s)

Thank you