EDV:
The ISF approach and a case study to help determine EDV status

ISF consideration on essential derivation

- ISF strongly supports the concept of essential derivation
- Only few internationally agreed-upon professional rules
- Essential derivation is not a new right, but is in the scope of the right of a protected initial variety
Proof of predominant derivation

Various criteria or combination thereof:

- Phenotypic characteristics
- **Molecular characteristics**
- Breeding records
- Combining ability

Morphological vs. Molecular

- Distance Coefficients to define a threshold (trigger point for the reversal of the burden of proof)
- Geneticists and statisticians: technically equally possible to measure distance coefficients using morphological markers; but that these distances are not always reflective of genetic distances or of pedigree relationships.
- Use of morphological characteristics could be more difficult due to environmental factors, and much more expensive.
- ISF has mainly worked on thresholds (distances measured by molecular markers)
Requirement for EDV study

- Reference population
 To assess global genetic diversity
- EDV specific population
 To investigate potential EDV / non EDV cases
- Marker type
 To chose a tool
- Eligibility of molecular marker
 To define marker requirement
- Genetic similarities measurement
 To chose a genetic distance index

Choice of markers

- The markers must comply with several requirements:
 - Be “freely” available
 - Meet several technical criteria
 - =>addressed in an ISF document “Issues to be addressed by technical experts to define molecular marker sets for establishing thresholds for ISF EDV arbitration” (www.worldseed.org)
How to fix the threshold

- Use of pairs with known genealogy.
 Investigate genetic diversity: global vs closely related pairs
- Similarity exceeding a percentile point in the distribution of similarities (upper-tail approach)

Lettuce

- Three lettuce types: 35 GH, 21 FS & 27 IC
- Include most important varieties and maximum variation in each type.
- Varieties collected and shortlist made by ISF secretariat.
- In all ISF studies both varieties and companies are coded.
PCO AFLP data with 95% confidence regions

GH, Jaccard

GH21 and GH22 were selected in the same F4

GH8 and GH11 come from same F3

GH30 and GH35 come from same F3

GH27 is from a cross involving GH25
Lettuce

- 2004: 0.96 Jaccard similarity for all 3 cultigroups
- Trigger to initiate discussions => amicable settlement => arbitration => court

Oilseed Rape

- 4 Studies carried out between 2001-2006
- Bulks of 40 plants have a very high repeatability
- Bulks of 40 plants lead to a clear separation of all the varieties

- 2007: Dice dist. of 0.85 is trigger to start discussions (assessment according to protocol)
Ryegrass

- SSR’s
- Guidelines
- Apply to all varieties (retroactive)
- Arbitration or court possible
- 1st Phase: Bulks provide same result as ind. Plants
- 2nd Phase: analyse variability in current varieties => come to threshold.
- Jaccard 0.6 reversal of burden of proof

Cotton

- Literature review on mol. mrks in cotton
- Gen. Div. within allotetraploid cotton varieties => no EDV threshold assigned
- Different approach: parentage
- 2007: If phen. or gen. char’s suggest that 2 or more BC’s were used or coefficient of parentage value is >87.5% => put. EDV
- Threshold is trigger point for discussions
- No settlement => arbitration
Tomato

To detect the use of a proprietary inbred line in a hybrid

- **Phase 1** (2006 – 2007)
 - Daniela type
 - 21 hybrids, 35 parental lines from 5 companies
 - 93 SSR markers
- **Phase 2** (2008 – 2009)
 - Cherry type
 - 17 hybrids, 34 parental lines from 6 companies
 - Same set of markers as for Daniela type
- **Phases 3 and 4** (2010 – 2011)
 - SSR vs SNP markers
 - Different indices of similarity - Dice, Rogers and Simple Matching Percentage

Tomato

Conclusions

- SNP markers (7720 publicly available markers in the SOLCAP 10K Array) deliver data of excellent quality to detect the use of proprietary inbred line as a parent
- Compared to SSR, SNP markers are less sensitive when used with inbred lines that are were not fixed or had some residual heterozygosity
- A threshold for the Simple Matching Percentage (SM%) could be set to a value as high as 99.95
 - SM% - an index of genetic similarity that measures the match between alleles in the hybrid and the inbred line
ISF recommends to its members

In case of dispute:

- First enter into a conciliation or mediation procedure
- If that does not provide satisfactory results, enter into (binding) arbitration
- According to ISF Procedure Rules for Dispute settlement.
Maize

- 150 SSR markers, highly polymorphic
- Uniformly distributed, 80% coverage
- Avg 2 mrkrs/bin, Distance > 5cM
- Min. 3 alleles/mrkr, PIC min 0.3 [0.6-0.7]

- 2008: At 82% conformity: burden of proof shifts to breeder of put. EDV
- At 90% conformity: strong indication of predominant derivation

Molecular Marker Data: Criteria

- Molecular markers provide a genetic measure of relatedness
- Methodology must be scientifically sound and readily available
 - Highly discriminative, repeatable, readily scorable
 - Data analysis, statistically sound,
 - Meet peer reviewed standards for publication
 - Be publicly available including at third party laboratories
Agreed interpretation of the data

- Genetic similarity-zone thresholds
- Meaning of thresholds-zones: determining predominant derivation e.g.
 - Red zone: greater certainty of predominant derivation
 - Orange zone: possible predominant derivation
 - Green zone: no evidence of predominant derivation
 - Red or orange would reverse the burden of proof
 - More precise interpretations of red and orange zones as evidence of predominant derivation may also be adopted

Joint multi-company International Approaches: SSRs

- Early 2000s, ASTA, SEPROMA, and experts from Germany (Univ. of Hohenheim) examined SSR data:
 - 1) US inbreds of known pedigree (unrelated-99% similar)
 - 2) Inbreds PVP’d in Europe of (largely) unknown pedigree, but of known performance
 - 3) computer modeling simulation studies
Joint multi-company International Approaches: Agreed upon thresholds using SSRs

- Below 82% SSR similarity: Green Zone
 - No predominant derivation
- 82%-89% SSR similarity: Orange zone
 - “the burden of proof shifts to the breeder of the putative essentially derived variety. Other criteria should be evaluated including combining ability, phenotypic characteristics and breeding records” (ISF, 2008)
- 90% or above: Red zone
 - “a strong indication of predominant derivation.”

ASTA / UFS - SNP project

- Materials:
 - Inbred lines and SSRs used to establish SSR thresholds.
 - 26,784 SNPs from 50k snp chip (dropped those that performed poorly, or were biased toward showing differences between only B73 and Mo17)
- Goals:
 - Compare genetic similarities between inbred lines using SNP and SSR data
 - Determine number of SNPs needed
 - Convert SSR based threshold-zones to their SNP equivalents
 - Essentially a recalibration exercise
Based on a set of SNP’s optimized and selected jointly from the genetic map and the physical map. Correlation SSR-SNP

R square 0.94
Slope = 0.5”

DRAFT Proposals

- Use a mix of markers based upon physical and genetic maps
- 1536 or 3072 SNPs
 - SD 0.006 and 0.004, respectively

- 95% + = red zone
- 91%-94% = orange zone
- <90% = green zone

- Final tests of SNP sets underway
- Next steps
 - Present to ASTA, UFS Boards, ISF, write manuscript for peer review and publication in the scientific literature
DRAFT Proposals

- 1536 or 3072 SNPs markers chosen based upon physical and genetic maps
 - SD 0.006 and 0.004, respectively
 - Final tests of SNP sets underway
- Proposed equivalent threshold
 - 95% += red zone
 - 91%-94% = orange zone
 - <90% = green zone
- Next steps
 - Present to ASTA, UFS and ISF for validation, write manuscript for peer review and publication in the scientific literature

References

Maize EDV Case Study

- DUS are NOT the issue
- Predominant derivation IS the issue
- Pedigree IS the issue
- Closeness of pedigree or genetic similarity IS the issue
- Prima facie evidence is initially difficult to obtain:
 - Lots of resource, time demanding morphological comparisons
 - BUT morphology often obscures genetic-pedigree similarity
 - Pedigree breeder notes confidential
 - Impossible to morphologically compare proprietary parental lines
- Molecular marker data can provide a genetic measure
ASTA / UFS - SNP project

› SNPs replacing SSRs
› Scientific team
 ‚ Post-doc Yves Rousselle
 ‚ INRA Plant Genetics group, Alain Charcosset, France
 ‚ Rex Bernardo - Univ Minnesota USA
 ‚ Benjamin Stich - Max Planck Institute Germany
› ASTA and UFS company representatives
 ‚ Agreliant, Caussade Semences, Dow, Euralis, KWS, Limagrain, Maisadour, Monsanto, DuPont Pioneer, RAGT, Syngenta,