INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

TECHNICAL WORKING PARTY FOR VEGETABLES
Thirty-Fourth Session Angers, France, September 11 to 15, 2000

Survey on required amount of plant material to be submitted, plant number in the field and sample size in the existing UPOV Test Guidelines.

Annexed a summary (I) is given of the relevant data derived from the existing UPOV guidelines within the TWV.

The following data are given:
Common name The name of the specie involved
Guideline no.
Quantity of seed \quad Requested amount of seeds in grammes; $(\mathrm{op})=$ open polinated, $(\mathrm{h})=$ F1 hybrid
Calculated seeds The number of seeds calculated, using the requested amount and the 1000 seed weight according to ISTA
Number of plants In some guidelines not only the seed quantity is given, but for vegetatively propagated varieties also the number of plants to be transmitted.

Summary (II):
Common name The name of the specie involved
Guideline no.

No of plants in test The minimal number of plants to be included in each test.
The following abbreviations are used:
(o) = open ground
$(\mathrm{g})=$ glasshouse
$($ drilled $)=$ direct drilled
$($ sing $)=$ single plants
(dwarf) $=$ dwarf types
$($ climb $)=$ climbing types
(s) = seed propagated
(v) = vegetatively propagated

No of plants measured Minimum number of plants to be measured
No of plants in resist Minimum number of plants to be included in each resistance test.
Further the species are grouped in groups with comparable features. Per group the following conclusions may be drawn.

CABBAGE GROUP

No of plants to be measured; there seems no reason to measure a double number of plants for cauliflower.
No of plants in test; there seems no reason to test different numbers of plants; 60 plants for all species is advised.
Resistances: sometimes tests could be carried out: 20 plants per test.

With this data the amount of seeds can be calculated using the following formula:
$\mathrm{X}=3(\mathrm{px} 5)+3(\mathrm{rx} 3)+10(\mathrm{px} 5)$ or

> Xnumber of seeds $=3$ test seasons (pnumber of plants per test x
> 5factor for the difference between sowing and usuable plants) + 3tests (r number of plants per resistance test x 3tests) +10 factor for storage amount (pnumber of plants per test x 5factor for the difference between sowing and usuable plants)

For the cabbage group this means: $\mathrm{x}=3(60 \mathrm{x} 5)+3(20 \mathrm{x} 3)+10(60 \mathrm{x} 5)=4080$ seeds $=20 \mathrm{~g}$ (is now 25 to 50)

FRUIT VEGETABLE GROUP

Predominantly protected crops, often hybrids and multiple resistances.
No of plants to be measured: 18 for all crops
No of plants per test: 20 for all crops
No of plants per resistance test: 20 for all crops
Formula: $\quad X=3(p x 3)+3(r x 5)+10(p x 3)=3(18 x 3)+3(18 x 5)+10(18 x 3)=872$ seeds
This means pepper 5 g (now 10)
Watermelon $\quad 100 \mathrm{~g}$ (now 400)
Melon $\quad 25 \mathrm{~g}$ (now 20)
Cucumber/gherkin $\quad 25 \mathrm{~g}$ (now 20)
Tomato 5 g (now 25/10)
Egg plant 5 g (now 15)
Okra 50 g (now 200)

LEAFY VEGETABLE GROUP

This is a mixed group with the following pecularities; self pollinating or not, direct drilled or transplanted. For lettuce and spinach resistances play a role

No of plants to be measured: endive, lettuce, leaf chicory: 20 plants Witloof, spinach, corn salad, celery, leaf beet: 60 plants

No of plants per test: endive, lettuce, leaf chicory: 80 plants
Witloof, spinach, corn salad, celery, leaf beet: 100 plants

No of plants per resistance test lettuce, spinach: 50 plants
Formula endive, leaf chicory: $\mathrm{X}=3(\mathrm{px} 10)+10(\mathrm{px} 10)=3(80 \mathrm{x} 10)+$ $10(80 \times 10)=10.400$ seeds
Lettuce: $\mathrm{X}=3(\mathrm{px} 10)+3(\mathrm{rx} 5)+10(\mathrm{px} 10)=3(80 \mathrm{x} 10)+$ $3(50 \times 5)+10(80 \times 10)=11.150$ seeds
Witloof, corn salad, celery, leaf beet: $\mathrm{X}=3(\mathrm{px} 10)+10(\mathrm{px10})=$ $3(100 \times 10)+10(100 \times 10)=13.000$ seeds
Spinach: $\mathrm{X}=3(\mathrm{px} 10)+3(\mathrm{rx} 5)+10(\mathrm{px} 10)=3(100 \times 10)+$ $3(50 \times 5)+10(100 \times 10)=13.750$

This means based on direct drilling:

Endive	20 g (now 20)
Witloof	30 g (now 50)
Leaf chicory	25 g (now 25)
Lettuce	15 g (now 30)
Spinach	150 g (now 250)
Corn salad	50 g (now 150)
Celery	5 g (now 10)
Leaf beet	200 g (now 100)

PEAS

Formula $\mathrm{X}=3(\mathrm{px} 3)+3(\mathrm{rx} 3)+10(\mathrm{p} \times 3)=3(100 \times 3)+3(20 \times 3)+10(100 \times 3)=4080$ seeds. This means 1500 g (now 1000 g).

BEANS

Formula $\mathrm{X}=3(\mathrm{px} 3)+3(\mathrm{rx} 3)+10(\mathrm{px} 3)=3(150 \mathrm{x} 3)+3(20 \mathrm{x} 3)+10(150 \times 3)=6030$ seeds.

This means	Runner bean	2500 g (now 2000)
	French bean	1750 g (now 1000)
	Broad bean	6000 g (now 2000)

ALLIUMS

60 plants to be measured seems rather high. Further 100 plants in trail for onion, 120 for garlic and 200 for leek and bunching onion could be simplyfied; all 100 or all 200.

Formula: $\mathrm{X}=3(\mathrm{px} 5)+10(\mathrm{px5})=(\mathrm{p}=100)=1500+5000=6500$ seeds $=20 \mathrm{~g}$ $(\mathrm{p}=200)=3000+10.000=13.000$ seeds $=40 \mathrm{~g}$ (now 60)

ROOT VEGETABLES

A mixed, cross polinating species, direct drilled and transplanted. Resistances play no role. For Horse radish only the number of plants is given.
Industrial Chicory is left out the discussion as it is grown as agricultural crop and most testing authorities also perform VCU on the sample.

Number of plants to be measured: 20 plants for Horse radish seems too low. Number of plants per trial: 300 plants for black salsify seems excessive.

Formula: $\mathrm{X}=3(\mathrm{px} 5)+10(\mathrm{px} 5)$
Radish, Black salsify, Carrot, Beetroot $(\mathrm{p}=200) \mathrm{X}=13.000$ seeds $=$
Radish $\quad 150 \mathrm{~g} \quad$ (now 100)

Black salsify $\quad 20 \mathrm{~g}$ (now 200)
Carrot $\quad 25 \mathrm{~g}$ (now 50)

Beetroot $\quad 500 \mathrm{~g} \quad$ (now 200)
Black radish $\quad(\mathrm{p}=90) \quad \mathrm{X}=5.850$ seeds $=60 \mathrm{~g}$ (now 50 g)
Swede $\quad(p=120) \quad X=7.800$ seeds $=25 \mathrm{~g}$ (now 500)
Celeriac $\quad(p=60) \quad X=3.900$ seeds $=2 g$ (now 4 per test)
[Annexes are saved as an Excel file.]

