TECHNICAL WORKING PARTY FOR ORNAMENTAL PLANTS AND FOREST TREES
 Thirtieth Session
 Svendborg, Denmark, September 1 to 5, 1997

WORKING PAPER ON TEST GUIDELINES FOR RUBBER
(Heavea Aubl.)

Document prepared by experts from New Zealand

I. Subject of these Guidelines

These Test Guidelines apply to all vegetatively propagated varieties of Hevea Aubl. of the family Euphorbiaceae.

II. Material Required

1. The competent authorities decide when, where and in what quantity and quality the plant material required for testing the variety is to be delivered. As a minimum, the following quantity of plant material is recommended:

$$
15 \text { plants at the two whorl stage on rootstock. }
$$

Recommended rootstocks are seedlings of GT1, AVROS 2037 and LCB 1320.
2. It is recommended that the trial is planted in the wet season. If the trial is intended to grow adult trees, then a spacing of 4 m between trees in the row is necessary. A spacing of 1 m between trees in the row is acceptable for the growing of young plants if adult characteristics will be observed elsewhere.
3. The plant material supplied should be visibly healthy, not lacking in vigour or affected by any important pests or diseases. It should preferably not be obtained from in vitro propagation.
4. The plant material must not have undergone any treatment unless the competent authorities allow or request such treatment. If it has been treated, full details of the treatment must be given.
5. If the applicant submits distinguishing characteristics which can only be observed on adult trees, he should be able to indicate to the authorities at least seven adult trees of the variety on which these characteristics can be observed.

III. Conduct of Tests

1. A test should normally be conducted for two growing periods. If distinctness and/or uniformity cannot be sufficiently established in two growing periods, the test should be extended for a further growing period.
2. The tests should normally be conducted at one place. If any important characteristics of the variety cannot be seen at that place (e.g. characteristics of the adult tree), the variety may be tested at an additional place.
3. The tests should be carried out under conditions ensuring normal growth. The size of the plots should be such that plants or parts of plants may be removed for measurement and counting without prejudice to the observations which must be made up to the end of the growing period. Each test should include a total of 15 plants. Separate plots for observation and for measuring can only be used if they have been subject to similar environmental conditions.
4. Additional tests for special purposes (e.g. chemical composition of latex) may be established.

IV. Methods and Observations

1. Unless otherwise stated, all observations determined by measurements should be made on 15 plants.
2. For the assessment of uniformity, a population standard of 1 percent and an acceptance probability of 95 percent should be applied. In the case of a sample size of 15 plants, the maximum number of off-types allowed would be one.
3. All observations on the leaflet should be made on central leaflets unless otherwise stated. Central leaflets should be taken from mature leaves from a central cluster (whorl) on the main stem.
4. All observations on the main stem should be made in the second year of test or on mature trees.
5. All observations on the bark should be made on the main stem.
6. All bark characters should refer only to bark that has not been used for tapping.
7. All observations on the branch should be made in the second year of test or on mature trees.
8. All observations on the crown and defoliation should be made on mature trees.

V. Grouping of Varieties

1. The collection of varieties to be grown should be divided into groups to facilitate the assessment of distinctness. Characteristics which are suitable for grouping purposes are those which are known from experience not to vary, or to vary only slightly, within a variety. Their various states of expression should be fairly evenly distributed throughout the collection.
2. It is recommended that the competent authorities use the following characteristics for grouping varieties:
(a) Leaflet blade: relative position to side leaflets.
(b) Leaflet blade: shape.
(c) Leaflet blade: shape relative to side leaflets.
(d) Leaflet blade: shape in cross section.
(e) Leaflet blade: intensity of green colour of upper side.
(f) Leaflet petiole: length.

VI. Characteristics and Symbols

1. To assess distinctness, uniformity and stability, the characteristics and their states as given in the the Table of Characteristics should be used.
2. Notes (1 to 9), for the purposes of electronic data processing, are given opposite the states of expression for each characteristic.

3. Legend:

(*) Characteristics that should be used on all varieties in every growing period over which examinations are made and always be included in the variety descriptions, except when the state of expression of a preceding characteristic, or regional environmental conditions, render this impossible.
(+) See Explanations on the Table of Characteristics in chapter VIII.

TWO/30/3

page 5

VII Table of Characteristics

Characteristic and State
Example Variety
Note

1. Leaflet blade: attitude

(+)
semi-erect3
horizontal RRIC 100 5
semi-drooping 7
2. Leaflet blade:
(*) relative position to
(+) side leaflets
free BPM 1 1
partially overlapping GT $1 \quad 2$
overlapping PB 260
3
3. Leaflet blade: length
short 3
medium 5
long 7
4. Leaflet blade: length relative to side leaflets
shorter 1
same
GT 1 2
longer
PB 260
3
5. Leaflet blade: width
narrow 3
medium 5
broad 7
6. Leaflet blade: shape
(*)
(+)
lanceolate \quad RRIC $102 \quad 1$
broad lanceolate 2
elliptic BPM 1
3
obovate
GT 1
4

7. Leaflet blade: shape

(*) relative to side leaflets
similar GT1 1
different PB 260 2
8. Leaflet blade: shape
(*) in longitudinal section
(+)
straight BPM 1 1
convex GT 1 2
S shaped 3
9. Leaflet blade: shape
(*) in cross section
(+)
V-shaped BPM 1 1
U shaped
approximately straight
RRIC 100 2
convex 4
10. Leaflet blade:
(*) intensity of greencolour of upper side
light BPM 1 3
medium BPM 24 5
dark GT 1 7
11. Leaflet blade:
(*) glossiness of upper side
absent to very weak BPM 24 1
weak 3
medium GT 1 5
strong 7
very strong 9
12. Leaflet blade: thickness
thin 3
medium 5
thick 7

```
TWO/30/3
page 7
```

13. Leaflet blade: roughness of
(*) surface (upper side)
smooth GT $1 \quad 3$
medium 5
rough RRIC 101
7
14. Leaflet blade: pubescence on veins on lower side
absent 1
present
15. Leaflet blade: intensity of pubescence on veins on lower side
weak 3
medium 5
strong 7
16. Leaflet blade: undulation
(*) of margin
$\begin{array}{lll}\text { absent } & \text { BPM 24 } & 1 \\ \text { present } & \text { RRIC 100 } & 9\end{array}$
17. Leaflet blade: degree of undulation of margin
weak PB $260 \quad 3$
medium 5
strong 7
18. Leaflet blade: shape of tip
(+)
acuminate1
aristate \quad BPM 1 2
cuspidate
3
19. Leaflet blade: shape of base
(*)
(+)
attenuate
PB 2601
cuneate
GT 1
2
attenuate
RRIC 102
3

TWO/30/3

page 8
20. Leaflet petiole: length
(*)
short
RRIC 100
3
medium
long
GT 1
5
BPM $24 \quad 7$
21. Leaflet petiole: attitude
(*)
erect 1
semi-erect 3
horizontal GT 1
5
22. Leaflet petioles: angle in between
small 3
medium 5
large 7
23. Leaf petiole: attitude
(+)
semi-erect
RRIC 100
3
horizontal
5
semi-drooping 7
24. Leaf petiole: length
short 3
medium 5
long 7
25. Leaf petiole: longitudinal shape
(*)
(+)
concave 1
straight GT 1 2
convex TM6 3
S shaped 4
26. Leaf cluster: shape of apex
(*) in lateral view
(+)
acute (conical)
RRIC $102 \quad 1$
truncate
2
regularly rounded
RRIC 100
3
irregularly rounded

TWO/30/3

page 9
27. Leaf cluster: density
(*)
(+)
sparse 3
medium 5
dense 7
28. Main stem: form
straight GT $1 \quad 3$
intermediate 5
curved 7
29. Main stem: shape in cross section (lower third)
round 1
elliptic 2
fluted 3
30. Main stem: diameter (lower third)
small 3
medium 5
large 7
31. Main stem: length
(*) between leaf clusters
(+)
short GT $1 \quad 3$
medium 5
$\begin{array}{lll}\text { long } & \text { TM } 6 & 7\end{array}$
32. Main stem: axillary buds
(*)
sunken 1
flat PB 260 2
protruding BPM 1 3
33. Main stem: shape of leaf scars
(*)
elliptic \quad RRIC $102 \quad 1$
flattened elliptic \quad RRIC $100 \quad 2$
triangular BPM 1
3
flattened triangular
GT 1 4

34. Bark: colour

reddish 1
brown 2
grey 3
35. Bark: surface
(*)
smooth 1
flaky 2
bumpy BPM 1 3
ridged 4
36. Bark: thickness
(*)
thin 3
medium BPM 1 5
thick AVROS 2037 7
37. Bark: firmness
soft 3
medium AVROS 2037 5
firm 7
38. Primary branch: shape
straight 3
intermediate 5
curved 7
39. Primary branch: angle between
(*) first 5 cm of branch and main stem
small (very acute) 3
medium (acute) GT 1 5
large (weakly acute to right angle) 7
40. Primary branch: thickness
(*)
thin PB 260 3
medium GT 1 5
thick 7
41. Primary branch: surface
smooth 3
medium 5
rough 7
42. Primary branches: number
few 3
medium 5
many 7
43. Primary branches: number of self terminating branches
few 3
medium 5
many 7
44. Primary branch: number ofsecondary branches
few 3
medium 5
many 7
45. Crown: size
(*)
small 3
medium BPM 1 5
large 7
46. Crown: shape of apex
(*)
obtuse PB 260 1
rounded 2
acute BPM 1 3
47. Crown: density
(*)
sparse 3
medium PB 260 5
dense PR 261 7
48. Crown: symmetry
asymmetrical 1
symmetrical PB 260 2
49. Latex: colour
(*)
white GT 1 1
light yellow 2
yellow 3
50. Tree: degree ofdefoliation
low 3
medium 5
high GT 1 7
51. Time of defoliation
early BPM 1 3
medium 5
late GT 17
VIII. Explanations on the Table Characteristics

1. Leaflet blade: attitude

$$
1 \text { = semi-erect }
$$

$$
2 \text { = horizontal }
$$

$$
3 \text { = semi-drooping }
$$

2. Leaflet blade: relative position to side leaflets

1 = free
2 = partially overlapping
3 = overlapping

6. Leaflet blade: shape

1 = lanceolate
2 = broad lanceolate
3 = elliptic
4 = obovate

8. Leaflet blade: shape in longitudinal section

$$
1=\text { straight } \quad 2=\text { convex } \quad 3=\text { S shape }
$$

9. Leaflet blade: shape in cross section
$1=\mathrm{V}$ shaped $\quad 2=\mathrm{U}$ shaped $\quad 3=$ approximately straight $\quad 4=$ convex
10. Leaflet blade: shape of tip

$$
1=\text { acuminate } \quad 2=\text { aristate } \quad 3=\text { cuspidate }
$$

19. Leaflet blade: shape of base

$$
1=\text { attenuate } \quad 2=\text { cuneate } \quad 3=\text { obtuse }
$$

23. Leaf petiole: attitude

TWO/30/3

[^0]25. Leaf petiole: longitudinal shape
1 = concave
2 = straight
3 = convex
4 = S shape
26. Leaf cluster: shape of apex in laterial view
$$
1 \text { = acute (conical) } 2 \text { = truncate }
$$
3 = regularly rounded
4 = irregularly rounded
27. Leaf cluster: density
1 = sparse
3 = medium
7 = dense

31. Main stem: length between leaf clusters

3 = short
$5=$ medium
7 = long

Franke, G., 1994: Nutzpflanzen der Tropen und Subtropen. Ed.3, Spezieller Pflanzenbau Verlag Eugen Ulmer, Stuttgart, Germany

IBPGR, 1988: Directory of Germplasm Collections. 5.II. Industrial Crops: Beet, Coffee, Oil Palm, Cotton and Rubber. E. Bettencourt, J. Konopka, International Board for Plant Genetic Resources (now IPGRI), Rome

Liyanage, A. De.S.; O.S. Paires, 1984: A practical guide to rubber planting and processing. Rubber Research Institute of Sri Lanka.

Peanot, E., R. Azwar: Rubber Clones Index for Indonesia. (Unpublished). IRRI Sungei Putih. 1994

Rehm, S., G. Espig, 1984: Die Kulturpflanzen der Tropen und Subtropen, Verlag Eugen Ulmer, Stuttgart, Germany

Webster, C.C., W.J. Baulkwill (eds), 1989: Rubber. Longman Group, London

[^0]: 1 = semi-erect
 2 = horizontal
 3 = semi-drooping

