Technical Working Party on Testing Methods and Techniques	TWM/2/10
---	----------

Original: English

Second Session Virtual meeting, April 8 to 11, 2024

Original: English Date: March 19, 2024

A METHOD FOR CALIBRATION OF SIZE AND COLOR USED IN IMAGE ANALYSIS

Document prepared by an expert from China

Disclaimer: this document does not represent UPOV policies or guidance

The annex to this document contains a copy of a presentation "a method for calibration of size and color used in image analysis", to be made by an expert from China, at the second session of the Technical Working Party on Testing Methods and Techniques (TWM).

[Annex follows]

TWM/2/10

ANNEX

ght has sign	nificant inf	luence in co	lor. RGB dis	stance betw	een two col	or could be	
ght has sign	nificant inf	luence in co	lor. RGB dis	stance betw	reen two col	or could be	•
ght has sign	nificant inf	luence in co	olor. RGB dis	stance betw	een two col	or could be	•
a a a r than '							
gger man z	25.						
Ruler	IMA1	IMA2	IMA3	IMA4	IMA5	IMA6	VO
Vellow	153D	8A	2B	154B	154B	160A	153D
yenow				OCD	06B	NQ5R	94A
blue	95B	99B	N95D	90B	90B	TN30D	JHA
blue green	95B 143A	99B 135C	N95D 140C	96B 140B	140B	141D	140A
blue green red	95B 143A 45A	99B 135C 45A	N95D 140C 43C	90B 140B 42C	140B 42B	141D 175B	140A
blue green red white	95B 143A 45A 198D	99B 135C 45A 155A	N95D 140C 43C 69D	90B 140B 42C 192D	140B 42B 192D	141D 175B 112D	140A 45A 155A

NFW M	FTHO)						
		,						
color	white	yellow	light grey	green	red	blue	dark grey	black
standard R	197	205	173	99	152	49	53	27
standard G	198	180	173	149	47	55	47	24
standard B	193	80	175	78	41	115	49	19
1 actual R	254	249	239	152	230	100	98	59
1 actual G	252	231	239	217	96	107	96	56
1 actual B	254	148	241	126	85	195	101	51
2 actual R	225	232	213	133	196	71	78	52
2 actual G	229	212	214	187	78	82	76	50
2 actual B	230	115	216	109	74	162	79	46
3 actual R	138	147	111	54			27	19
3 actual G	141	129	118	99	26		26	15
2 actual P	151	18	126	42			31	16

	που							
White baland	e value=r '	* 0.299 +	a * 0.587	+ b * 0.1	14			
197 * 0.299	+ 198 * 0.	587 + 193	3 * 0.114	= 197.13	1			
			• ••••		•			
standard wb	197.131	176.075	173.228	125.956	77.711	60.046	49.022	24.327
otanaara wo		000.00	239 228	187.191	134.812	114.939	97.168	56.327
1 actual wb	252.826	226.92	200.220					
1 actual wb 2 actual wb	252.826 227.918	226.92	213.929	161.962	112.826	87.831	76.94	50.142
1 actual wb 2 actual wb 3 actual wb	252.826 227.918 141.243	226.92 206.922 125.148	213.929 116.819	161.962 79.047	112.826 47.158	87.831 35.373	76.94 26.869	50.142 16.31
1 actual wb 2 actual wb 3 actual wb 1 perfect rate	252.826 227.918 141.243 0.7797102	226.92 206.922 125.148 0.7759342	213.929 116.819 0.7241126	161.962 79.047 0.6728742	112.826 47.158 0.5764398	87.831 35.373 0.5224162	76.94 26.869 0.5045077	50.142 16.31 0.4318888
1 actual wb 2 actual wb 3 actual wb 1 perfect rate 2 perfect rate	252.826 227.918 141.243 0.7797102 0.8649207	226.92 206.922 125.148 0.7759342 0.8509245	213.929 116.819 0.7241126 0.8097453	161.962 79.047 0.6728742 0.7776886	112.826 47.158 0.5764398 0.6887685	87.831 35.373 0.5224162 0.6836538	76.94 26.869 0.5045077 0.6371458	50.142 16.31 0.4318888 0.4851621
1 actual wb 2 actual wb 3 actual wb 1 perfect rate 2 perfect rate 3 perfect rate	252.826 227.918 141.243 0.7797102 0.8649207 1.3956869	226.92 206.922 125.148 0.7759342 0.8509245 1.4069342	213.929 116.819 0.7241126 0.8097453 1.4828752	161.962 79.047 0.6728742 0.7776886 1.5934318	112.826 47.158 0.5764398 0.6887685 1.6478858	87.831 35.373 0.5224162 0.6836538 1.6975094	76.94 26.869 0.5045077 0.6371458 1.8244817	50.142 16.31 0.4318888 0.4851621 1.4915389
1 actual wb 2 actual wb 3 actual wb 1 perfect rate 2 perfect rate 3 perfect rate	252.826 227.918 141.243 0.7797102 0.8649207 1.3956869	226.92 206.922 125.148 0.7759342 0.8509245 1.4069342	213.929 116.819 0.7241126 0.8097453 1.4828752	161.962 79.047 0.6728742 0.7776886 1.5934318	112.826 47.158 0.5764398 0.6887685 1.6478858	87.831 35.373 0.5224162 0.6836538 1.6975094	76.94 26.869 0.5045077 0.6371458 1.8244817	50.142 16.31 0.4318888 0.4851621 1.4915389
1 actual wb 2 actual wb 3 actual wb 1 perfect rate 2 perfect rate 3 perfect rate	252.826 227.918 141.243 0.7797102 0.8649207 1.3956869	226.92 206.922 125.148 0.7759342 0.8509245 1.4069342	213.929 116.819 0.7241126 0.8097453 1.4828752	161.962 79.047 0.6728742 0.7776886 1.5934318	112.826 47.158 0.5764398 0.6887685 1.6478858	87.831 35.373 0.5224162 0.6836538 1.6975094	76.94 26.869 0.5045077 0.6371458 1.8244817	50.142 16.31 0.4318888 0.4851621 1.4915389

15

NEW METHOD

rc = ra * ((wswb / wawb - bswb / bawb) * (ra - bawb) / (wawb - bawb) + bswb / bawb)

ra: actual red value

rc: corrected red value

wswb: white balance value of standard white color

wawb: white balance value of actual white color

bswb: white balance value of standard black color

bawb: white balance value of actual black color

	T 1 1 O D							
NEW ME	IHOD							
Corrected color								
color	white	yellow	light grey	green	red	blue	dark grey	black
standard R	197	205	173	99	152	49	53	27
standard G	198	180	173	149	47	55	47	24
standard B	193	80	175	78	41	115	49	19
1 corrected R	198.57421	192.46151	180.50161	91.388302	170.04039	50.919403	49.554077	25.760595
1 corrected G	196.11851	171.18858	180.50161	155.43598	48.202912	55.809561	48.202912	24.153358
1 corrected B	198.57421	87.935452	182.86527	69.95727	41.024625	132.0838	51.607377	21.545435
2 corrected R	193.20466	202.6846	177.44038	88.067328	156.16078	37.609995	42.484368	25.434819
2 corrected G	198.59614	176.15446	178.73057	145.39497	42.484368	45.363715	41.070328	24.24294
2 corrected B	199.95469	71.726584	181.32378	66.587276	39.673378	117.30567	43.197796	21.91045
3 corrected R	192.94815	204.51668	157.49681	78.981594	137.31826	40.050106	40.050106	28.300027
3 corrected G	196.81814	181.25532	166.79531	141.38159	38.586717	44.431068	38.586717	22.38816
3 corrected B	209.61835	70.426823	177.3301	61.816812	41.511961	122.30123	45.888319	23.868428
1 RGB distance	6.0901571	17.257643	13.206466	12.808015	18.080464	17.210334	4.4855093	2.8352926
2 RGB distance	7.945291	9.4126854	9.6201137	16.210177	6.2819522	15.096568	13.394219	3.3135384
3 RGB distance	17.145962	9.6672204	16.860505	26.845341	16.929232	15.65602	15.753274	5.2905286

FUTURE

- 1. Try to get real color in calibration ruler by other tool.
- 2. Verify new method in different light or camera.
- 3. Use calibration ruler to check image deformation.

