

TWC/34/8 Add. ORIGINAL: English DATE: May 31, 2016

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS

Geneva

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

Thirty-Fourth Session Shanghai, China, June 7 to 10, 2016

ADDENDUM TO CALCULATED THRESHOLDS FOR EXCLUDING VARIETIES OF COMMON KNOWLEDGE FROM THE SECOND GROWING CYCLE WHEN COYD IS USED

Document prepared by experts from the United Kingdom

Disclaimer: this document does not represent UPOV policies or guidance

The Annex to this document contains a copy of a presentation on "Calculated Thresholds for Excluding Varieties of Common Knowledge from the Second Growing Cycle when COYD is used", which will to be made at the thirty-fourth session of the Technical Working Party on Automation and Computer Programs (TWC).

Adrian Roberts (Biomathematics and Statistics Scotland (BioSS)), Ian Nevison (BioSS) & Tom Christie (SASA)

TWC/34/8 Add.

ANNEX

First Year Thresholds

Adrian Roberts, Ian Nevison and Tom Christie Funded by the Scottish Government

TWC/34/8 Add.

After first growing cycle:

- · Review results
- · Identify reference varieties that are clearly distinct from candidate
- TGP/9; GAIA

For quantitative characteristics where COYD is used

- · Difficult to do this effectively based on experience
- · Can we use a statistical approach?

Introduction

For quantitative characteristics where COYD is used

- New method proposed in TWC/25/14
- Shown in TWC/28/30 that this method needed improvement
- Improved method proposed in TWC/33/20
- Paper in Journal of Agricultural Science Roberts, Nevison & Christie (In press)

TWC/34/8 Add.

Calculate <u>probability</u> that a candidate will be distinct from a reference variety on 2-cycle COYD criterion,

Basis

- A prediction based on <u>only first year results</u>
- High probability → enough evidence that reference variety is distinct from candidate
- Reverse to get a threshold for a set probability (p_D)
- Method requires first year results plus historical data (>10 years)

How useful is this method in practice?

Evaluate on example data sets:

· GB DUS data for field pea

Results here

UPOV invitation for further example data sets

- · Slovakia: red fescue
- · Finland: timothy, meadow fescue and red clover
- · Denmark: oilseed rape?

Will review for TWC/35

TWC/34/8 Add.

Example data

- Field pea
- · United Kingdom
- 1995 to 2013
- Semi-leafless group
- · 13 quantitative characteristics
- 222 varieties
- COYD at 2%

Λ	0
1	JV
в	ioSS

Characteristic (UPOV number)	Mean	Standard deviation	Minimum	Maximum	Over-cycle heterogeneity index
(5) Stem: number of nodes up to and including first fertile node	16.0	1.59	9.6	20.9	13.0
(15) Stipule: length (mm)	82.3	13.48	47.2	121.5	4.4
(16) Stipule: width (mm)	46.3	8.80	23.7	79.0	4.1
(21) Stipule: density of flecking (1-9)	5.3	0.90	2.5	8.0	4.3
(22) Petiole: length from axil to first leaflet or tendril (mm)	83.2	13.34	34.8	128.6	5.8
(28) Flower: width of standard (mm)	31.8	2.64	23.3	41.1	9.1
(29) Flower: shape of base of standard (1-9)	6.8	1.02	4.0	9.0	3.8
(34) Peduncie: length from stem to first pod (mm)	72.9	24.41	12.0	145.7	4.6
(37) Pod: length (mm)	79.1	6.24	63.3	105.6	4.3
(38) Pod: width (mm)	13.9	1.22	10.5	18.6	3.4
(42) Pod: curvature (1-9)	2.4	0.58	1.0	5.5	2.5
(46) Pod: number of ovules	8.2	0.54	6.0	10.0	7.5
(57) Seed: weight	28.1	5.19	12.2	49.1	5.7

Characteristic	Threshold with p _p =0.99	Threshold with p _p =0.95	Thresholds with p _p =0.9	Current GB tolerance	Proposed new tolerance	Change
5	4.1	1.8	1.4	3	4.1	Ť
15	23.4	17.9	15.7	25	23.8	Ļ
16	14.2	11.2	9.9	20	14.2	Ļ
21*	2.0	1.6	1.4	3	3	=
22	28.4	21.3	18.6	30	28.4	Ļ
28	6.0	4.2	3.6	12	6.0	Ļ
29*	2.0	1.5	1.4	2	2	=
34	45.6	33.5	28.9	40	45.6	Ť
37	12.6	9.8	8.60	20	12.6	Ļ
38	2.0	1.6	1.4	2	2.0	=
42*	1.7	1.3	1.2	2	2	=
46	1.0	0.8	0.7	2	1.0	Ļ
57	9.7	7.0	6.0	8	9.4	1

How does it work in practice?

Apply calculated thresholds in the data set

compare first year decisions using thresholds with 2-year COYD decisions

False positive rate for each characteristic:

first-year threshold distinct: COYD non-distinct.

False negative rate for each characteristic:

first-year threshold non-distinct: COYD distinct

Need very low false positive rate to avoid poor decisions but need low false negative rate to make it worthwhile

TWC/34/8 Add.

NOTES OF CAUTION:

Real data: reference varieties may be removed after first year

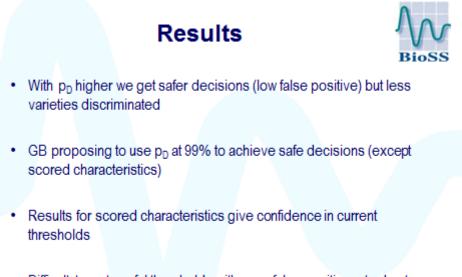
How does it work in practice?

· Would make false negative rate lower than reality

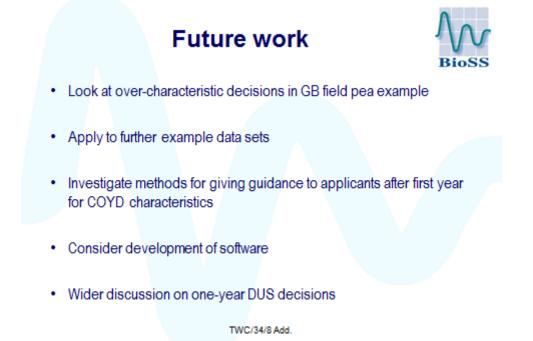
Decisions are made over the set of characteristics

- Here by characteristic
- · Will look at decisions over characteristics next

False positive rate


Characteristic	Calculated threshold with p ₀ =0.99	Calculated threshold with p _p =0.95	Calculated threshold with p _o =0.9	Current GB tolerance
5	0.00%	0.05%	0.40%	0.00%
15	0.07%	0.62%	1.34%	0.04%
16	0.17%	0.79%	1.59%	0.00%
21*	0.01%	0.18%	1.34%	0.00%
22	0.05%	0.41%	0.96%	0.03%
28	0.04%	0.54%	1.17%	0.00%
29*	0.15%	0.15%	0.99%	0.15%
34	0.03%	0.40%	1.05%	0.07%
37	0.02%	0.23%	0.57%	0.00%
38	0.04%	0.58%	1.17%	0.05%
42*	0.04%	0.56%	0.56%	0.04%
45	0.03%	0.33%	0.82%	0.00%
57	0.00%	0.23%	0.72%	0.08%

TWC/34/8 Add.


False negative rate

Characteristic	Calculated threshold with p _o =0.99	Calculated threshold with p _p =0.95	Calculated threshold with po =0.9	Current GB tolerance
5	82.8%	39.4%	24.5%	67.6%
15	86.8%	66.6%	54.3%	90.1%
16	76.8%	56.6%	46.2%	94.6%
21*	81.0%	60.8%	34.6%	88.8%
22	88.5%	67.5%	54.2%	91.3%
28	89.3%	65.4%	51.7%	99.9%
29*	57.3%	57.3%	34.4%	57.4%
34	84.7%	59.4%	46.2%	75.6%
37	81.2%	65.1%	54.4%	96.5%
38	77.1%	57.1%	47.4%	76.2%
42*	80.9%	58.2%	58.2%	81.1%
46	66.7%	44.1%	34.2%	97.5%
57	58.5%	34.6%	25.2%	43.7%

 Difficult to get useful thresholds with zero false positive rate due to COYD being inherently variable

