

TWC/34/27

ORIGINAL: English **DATE:** May 31, 2016

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS

Geneva

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

Thirty-Fourth Session Shanghai, China, June 7 to 10, 2016

PRACTICAL EXPERIENCE OF ASSESSING UNIFORMITY BY OFF-TYPES ON OILSEED RAPE AND CAULIFLOWER

Document prepared by an expert from France

Disclaimer: this document does not represent UPOV policies or guidance

The Annex to this document contains a copy of a presentation on "Practical experience of assessing uniformity by off-types on oilseed rape and cauliflower" that will be made at the thirty-forth session of the Technical Working Party on Automation and Computer Programs (TWC).

Abbreviations:

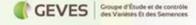
CPVO Community Plant Variety Office of the European Union

GEVES Variety and Seed Study and Control Group

OSR Oilseed rape

Anne-Lise Corbel, DUS head of oilseed rape, crucifers, flax and hemp, Groupe d'étude et de contrôle des variétés et des semences (GEVES)

[Annex follows]


ANNEX

Practical experience of assessing uniformity by off-types on oilseed rape and cauliflower

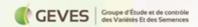
Plan

- Former, new rules and reasons for changing
- II. Example of oilseed rape
- III. Example of cauliflower
- IV. Conclusion

I. Former, new rules and reasons for changing

Former rules:

Addition of off-types between the 2 growing cycles


I.e. Approach 3: Combining the results of two growing cycles

But one of the CPVO requirement is: 2 independent growing cycles needed to establish DUS of a variety

→ New rules: (for 3 years)

Change to Approach 1: Third growing cycle in the case of inconsistent results (between the two first DUS cycles)

Observations of each cycle are analyzed independently If inconsistent → 3rd growing cycle

June 2016

II. Example of oilseed rape

For most agricultural species in GEVES: 2 DUS testing locations = 2 independent growing cycles

OSR: 70% self pollinating. Candidates: parental lines + hybrid varieties
In 2014, 182 varieties were in 1st year of study, among them, 170 were uniform
and 12 were concerned by uniformity problems:

Decision

Decision

Туре	Off-types 1 ^{A2} oyole	threshold 1 ⁴² oyole	Off-types 2 nd oyole	threshold 2 nd oyole	Σ off-types 1st and 2nd cycle	threshold sum 2 oyoles	with new with former rules rules	
HYB	55	39	55	37	110	70	ר רו	
HYB	50	39	71	39	121	72		
HYB	46	45	50	40	96	79	_Refusal	
LI	29	11	25	8	54	17	Refusal	
LI	21	11	14	8	35	17	Refusal	
LI	Global heterogeneity	13	Global heterogeneity	10	Global heterogeneity	10	L CREIUSAI	
HYB	43	35	18	24	61	54		
HYB	37	42	50	37	87	74	3rd	
LI	10	11	13	9	23	17	-	
LI	12	12	/ 11	10	23	19	├cycle _	
LI	5	10	11	9	16	16	Uniform	
LI	3	10	9	7	12	15		

6 varieties out of 182

For the others (176 out of 182) the decision is the same

June 2016

II. Example of oilseed rape

In 2015, 195 varieties were in 1st year of study, among them, 179 were uniform and, 16 were concerned by uniformity problems:

Туре	Off-types 1 ^{A2} oyole	threshold 1st oyole	Off-types 2 nd oyole	threshold 2 nd cycle	Σ off-types 1st and 2nd oyole	Threshold sum 2 oyoles	Decision with new rules	Decision with former rules
HYB	45	30	30	21	75	47		
HYB	48	36	29	27	77	58		
LI	10	8	10	7	20	13		
LI	12	9	9	8	21			
LI	13	9	8	7	21	13	Refusal	
ш	Global heterogeneity	8	Global heterogeneity	7	Global heterogeneity	14		
LI	39 9		25 8		64	15		Refusal
LI	14	8	10	7	24	13		
HYB	33	39	24	20	57	55		I
HYB	39	37	22	26	61	58		
LI	19	8	1	6	20	13		
LI	12	11	6	8	18	16		
LI	7	9	10	8	17	15	3rd cycle	
HYB	34	36	23	22	57	54		
HYB	14	37	21	20	35	53		Uniform
HYB	26	34	30	29	56	59		- Cimolini

Great difference between the 2 cycles → 3rd cycle seems to be necessary

June 2016

III. Example of cauliflower

Threshold per cycle: 3 off-types If sum cycle 1+cycle 2, threshold = 4 Hybrid varieties, 60 plants / cycle

Off-types observed during the 141 cycle	Conclusion cycle 1	Off-types observed during the 2 nd cycle	Conclusion cycle 2	Off-types observed during the 3rd cycle	Conclusion cycle 3	Decision with new rules	Sum OT 2 cycles	Conclusion If sum 2 cycles	Decision with former rules
2	<threshold → OK</threshold 	2	<threshold-> OK</threshold->	1	v/a		4	-threshold	OK, Uniform
3	=threshold →OK	3	-threshold-> OK		1/a	OK, Uniform	6	>threshold	
2	<threshold → OK</threshold 	4	>threshold-> 3 rd cycle	3	=threshold → OK		6	>threshold	Non-Uniform
4	> threshold	4	>threshold	n/a		Non- Uniform	8	>threshold	


Most of the candidate varieties are in the 1st or the last case, In the advantage of the applicant when close to the thresholds

June 2016

IV. Conclusion

- → From our experience, the new method permits us to better **meet the requirement of independency** of the growing cycles
- → Only a few varieties are concerned by the change of rules (most of the candidates are very uniform or very non-uniform)
- → Varieties for which we observe discordance → 3rd cycle allows to strengthen the decision (if the discordance is high, 3rd cycle increases reliability of observations)

June 2016

