

TWC/30/38 Rev. ORIGINAL: English DATE: June 21, 2012

# INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

# TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

# Thirtieth Session Chisinau, Republic of Moldova, June 26 to 29, 2012

F-RATIO TEST FOR PLANT VARIETAL DISTINCTNESS WITH CATEGORICAL CHARACTERISTICS

## Document prepared by experts from China

1. This document presents a method for an *F*-ratio test for distinctness of variety protection trials. This test method estimates potential differences in the sensitivity of varieties to environment effect. Two types of dummy example were conducted to demonstrate the application of the method in distinctness, uniformity and stability (DUS) test.

## INTRODUCTION

2. In new variety protection trials, many of the characteristics observed are categorical. The categorical data, or class data, only can use the non-parameter method to analyze. The Chi-square test is a widely used non-parameter method. The standard formula for the chi-square statistic used in such analysis is:

 $\chi^2 = \sum \frac{(\text{Observed value of a class} - \text{Expected value of a class})^2}{\text{Expected value of a class}}$ 

3. To use the Chi-square analysis for plant breeder rights' (PBR) purposes, how to arrive at certain conclusions about distinctness should be considered by formulating certain hypotheses using the classification data. One of the most important hypotheses is that the variety must be distinct on one or more characteristics from all other reference varieties on the list. Results vary from plant to plant, plot to plot and year to year and statistical criteria are required to separate genuine varietal differences from random variation, or experimental errors.

4. DUS tests, biologists wish to ascertain the relative effects of reference varieties and candidate varieties. In this paper, a method of ratio-test of two Chi-squares was put forward to compare the relative effects of candidate variety to reference variety. The former Chi-square is the Chi-square of goodness of fit of frequency distribution of candidate varieties fitting the theory frequency distribution, or the frequency distribution of reference varieties. The distribution of characteristics observed for this reference variety is considered to be the expected distribution. The latter Chi-square is the interaction between characteristics of reference variety and repeats of plot, or year. The interaction Chi-square can be considered as the heterogeneity Chi-square, or error of experiment, from the contingency table. Because the *F*-distribution is a derivative from two chi-square variables, we consider that the *F*-ratio test be used for comparing two Chi-squares from plant variety testing.

### F-DISTRIBUTION AND F-STATISTICS

5. Statisticians have shown that the ratio of two chi-square variables follows a new distribution known as the *F*-distribution. If we have one  $\chi^2$  variable with  $n_1$ -1 degree of freedom, and another with  $n_2$ -1 degree of freedom then the ratio has an *F*-distribution with  $n_1$ -1 degrees of freedom for the numerator and  $n_2$ -1 degrees of freedom for the denominator.

6. In other words, if  $\chi_1$  and  $\chi_2$  are both chi-squares with  $v_1$  and  $v_2$  degrees of freedom respectively, then the statistic *F* belongs to *F*-distribution.

$$F(v_1, v_2) = \frac{\chi_1^2 / v_1}{\chi_2^2 / v_2}$$

7. The two parameters,  $v_1$  and  $v_2$ , are the numerator and denominator degrees of freedom. That is,  $v_1$  and  $v_2$  are the number of independent pieces of information used to calculate  $\chi_1$  and  $\chi_2$ , respectively.

8. The *F*-distribution provides a function for comparing the ratios of two chi-square variables associated with different source factors. In DUS test, two variables with chi-squared distribution are derived from the source of variance. The first is the heterogeneity chi-square, derives from the interaction chi-square of contingency table of characteristic-by-repeat (year). The  $\chi^2$  value can be considered as the pooled error of experiment. The  $\chi^2$  value is denoted by  $\chi^2_H$  and its degree of freedom by df<sub>H</sub>. The second is the chi-square of goodness of fit, derives from the difference between the frequency distribution of candidate variety and the expected frequency distribution of characteristics of reference variety, and the expected frequency distribution is not the exact or theoretical distribution. We denote the chi-square of goodness of fit by  $\chi^2_F$ . Similarly, we denote its degree of freedom by df<sub>F</sub>.

## STATISTICAL HYPOTHESIS OF DISTINCTNESS TEST

1. Test the heterogeneity, or interaction between characteristic and repeat (year)

 $H_0$  is that characteristics and repeats (years) are independent, not associated or interactive. The statistic used is based on the Chi-square distribution with  $df_H$  degree of freedom.  $H_0$  is rejected if the calculated statistic  $\chi^2_H$  is greater than  $\chi^2_{\alpha}$  ( $df_H$ ) where  $\chi^2_{\alpha}$  ( $df_H$ ) is the percentile of the distribution corresponding to a cumulative probability of (1-  $\alpha$ ) and  $\alpha$  is the significance level. If  $H_0$  is rejected, there is interaction between the characteristic and repeat. At this time it would not be appropriate to make further distinctness test.

2. Test distinctness between candidate variety and reference variety

 $H_0$  is that to test the hypothesis of frequency distribution of characteristics from candidate variety fitted to expected distribution of reference variety the statistic used is based on the *F* distribution. If the null hypothesis  $H_0$  is true, then the statistic

$$F_0 = \frac{\chi_F^2 / df_F}{\chi_H^2 / df_H}$$

follows the *F* distribution with  $df_F$  degree of freedom in the numerator and  $df_H$  degrees of freedom in the denominator.  $H_0$  is rejected if the calculated statistic,  $F_0$ , is such that:

$$F_0 > f_\alpha(df_F, df_H)$$

where  $f_{\alpha}(df_{\rm F}, df_{\rm H})$  is the percentile of the distribution corresponding to a cumulative probability of (1-  $\alpha$ ) and  $\alpha$  is the significance level.

# Example 1

The following data are dummy example (Table 1). It was considered as a disease scoring of two candidate varieties and four repeats of a reference variety. The scoring was on 3 class scale (data from TGP/8/1 Draft 13).

| Frequencies of Classified Categories of both Candidate and Reference varieties |                |                                                             |                                         |                                                               |                                                                       |                                                                                                         |  |  |
|--------------------------------------------------------------------------------|----------------|-------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Characteristic                                                                 | nce variety    | Candidate v                                                 | arieties                                |                                                               |                                                                       |                                                                                                         |  |  |
|                                                                                | Repeat         | Repeat                                                      | Repeat                                  | Repeat                                                        | 1                                                                     | 2                                                                                                       |  |  |
|                                                                                | 1              | 2                                                           | 3                                       | 4                                                             |                                                                       |                                                                                                         |  |  |
| 1                                                                              | 12             | 6                                                           | 1                                       | 7                                                             | 34                                                                    | 32                                                                                                      |  |  |
| 2                                                                              | 23             | 20                                                          | 18                                      | 22                                                            | 6                                                                     | 8                                                                                                       |  |  |
| 3                                                                              | 9              | 19                                                          | 9                                       | 15                                                            | 6                                                                     | 4                                                                                                       |  |  |
| Total                                                                          | 44             | 45                                                          | 28                                      | 44                                                            | 46                                                                    | 44                                                                                                      |  |  |
|                                                                                | Characteristic | Characteristic<br>Repeat<br>1<br>1<br>1<br>2<br>2<br>3<br>9 | CharacteristicRepeatRepeat1211222322339 | CharacteristicReferenceRepeatRepeatRepeat12311261223201839199 | CharacteristicReference varietyRepeatRepeatRepeat12311261223201839199 | CharacteristicReference varietyCandidate varietyRepeatRepeatRepeatRepeat1123411261734223201822639199156 |  |  |

 Table 1 Frequencies of Classified Categories of both Candidate and Reference Varieties

1. Compute the  $\chi^2_H$  and degrees of freedom of interaction of repeat by characteristic

1.1 Fill all the given information in the Table 2 and compute the row totals (R), column totals (C), and grand total (G).

Table 2 Frequencies of Classified Categories of Reference Variety

| 110 | requencies of classified categories of Reference variety |        |        |        |        |       |  |  |  |  |
|-----|----------------------------------------------------------|--------|--------|--------|--------|-------|--|--|--|--|
|     | Characteristic                                           | Repeat | Repeat | Repeat | Repeat | Total |  |  |  |  |
|     |                                                          | 1      | 2      | 3      | 4      |       |  |  |  |  |
|     | 1                                                        | 12     | 6      | 1      | 7      | 26    |  |  |  |  |
|     | 2                                                        | 23     | 20     | 18     | 22     | 83    |  |  |  |  |
|     | 3                                                        | 9      | 19     | 9      | 15     | 52    |  |  |  |  |
|     | Total                                                    | 44     | 45     | 28     | 44     | 161   |  |  |  |  |

1.2 Compute the expected value of each of the rxc cells as:

$$E_{ij} = \frac{R_i C_j}{G}$$

Where  $E_{ij}$  is the expected value of the (*i*, *j*)th cell,  $R_i$  is the total of the *i*th row,  $C_j$  is the total of the *j*th column, and *G* is the grand total. For our example, the expected value of the first cell is computed as:

$$E_{ij} = \frac{R_1 C_1}{G} = \frac{26 \times 44}{161} = 7.11$$

The results for all 12 cells are shown as follows (Table 3).

Ì

| Table 3 The | Expected Freq | uencies of Classif | ied Categories of F | Reference Varieties |          |
|-------------|---------------|--------------------|---------------------|---------------------|----------|
|             | Class         | Repeat 1           | Repeat 2            | Repeat 3            | Repeat 4 |
|             | 1             | 7.11               | 7.27                | 4.52                | 7.11     |
|             | 2             | 22.68              | 23.20               | 14.43               | 22.68    |
|             | 3             | 14 21              | 14 53               | 9 04                | 14 21    |

1.3 The  $\chi_H^2$  value is the interaction of repeat-by-characteristic in contingency table and is computed as:

$$\chi_{H}^{2} = \frac{(12 - 7.11)^{2}}{7.11} + \frac{(23 - 22.68)^{2}}{22.68} + \dots + \frac{(15 - 14.21)^{2}}{14.21}$$
  
= 11.01045

And the degrees of freedom,  $df_{H}$ , is (r-1)(c-1)=(3-1)(4-1)=6

For our example, the tabular  $\chi^2$  value with 6 degrees of freedom is 12.59 at the 5% level of significance. Because the computed heterogeneity  $\chi^2_H$  value, 11.01 is smaller than the corresponding tabular  $\chi^2$  value at 5% level of significance, the hypothesis of no heterogeneity existed cannot be rejected. Then the distinctness between candidate variety and reference variety can be compared.

2. Compute the  $\chi_F^2$  value for Candidate 1 fitting the expected distribution of reference variety.

2.1 Compute the probability associated with each class based on contingency table of reference variety Compute the row totals (R) and grand total (G), and the ratio of the total of the *i*th row( $R_i$ ) to the grand total (G) is the probability associated with each class (Table 4).

| Class | Repeat 1 | Repeat 2 | Repeat 3 | Repeat 4 | Total | Probability |  |  |
|-------|----------|----------|----------|----------|-------|-------------|--|--|
| 1     | 12       | 6        | 1        | 7        | 26    | 0.16        |  |  |
| 2     | 23       | 20       | 18       | 22       | 83    | 0.52        |  |  |
| 3     | 9        | 19       | 9        | 15       | 52    | 0.32        |  |  |
| Total | 44       | 45       | 28       | 44       | 161   | 1.00        |  |  |

Table 4 Probability Distribution of Classified Categories of Reference Variety

2.2 Compute the expected frequency of Candidate 1 and its Chi-square of goodness of fit to the probability distribution of reference variety (Table 5).

### TWC/30/38 Rev. page 5

| Table 5 Free | Table 5 Frequency Distribution of Classified Categories of Candidate Variety 1 |       |              |           |             |                  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------|-------|--------------|-----------|-------------|------------------|--|--|--|--|
|              | Class                                                                          | Refer | ence variety |           | Candidate 1 | $(O_i - E_i)^2$  |  |  |  |  |
|              |                                                                                | Total | Probability  | Observed  | expected    | $\frac{1}{E_i}$  |  |  |  |  |
|              |                                                                                |       |              | frequency | Frequency   | $\mathbf{L}_{i}$ |  |  |  |  |
|              | 1                                                                              | 26    | 0.16         | 34        | 7.43        | 95.02            |  |  |  |  |
|              | 2                                                                              | 83    | 0.52         | 6         | 23.71       | 13.23            |  |  |  |  |
|              | 3                                                                              | 52    | 0.32         | 6         | 14.86       | 5.28             |  |  |  |  |
|              | Total                                                                          | 161   | 1.00         | 46        | 46          | 113.53           |  |  |  |  |

The  $\chi_F^2$  value is the goodness of fit, and the degrees of freedom, df<sub>F</sub>, is (r-1)= (3-1)=2

2.3 Similarly the calculated  $\chi_F^2$  for Generation 2 is 103.97 and the degrees of freedom, df<sub>F</sub>, is also (*r*-1)= (3-1)=2.

3. Compute the *F* value, or *F*-ratio for testing the distinctness between candidate 1 and reference variety as:

$$F = \frac{\chi_F^2 / df_F}{\chi_H^2 / df_H}$$

Put data into the above formula, results are as Table 6.

Table 6 F-ratio Statistics and Significance p-value of Candidate Varieties

| rauo | otatiotico ana orgin | nounce p value  |                                   |        |
|------|----------------------|-----------------|-----------------------------------|--------|
|      | Candidate            | <i>F</i> -Ratio | <i>F</i> -Ratio Degree of freedom |        |
|      | Variety              |                 |                                   |        |
|      | 1                    | 30.94           | (2,6)                             | 0.0007 |
|      | 2                    | 28.33           | (2,6)                             | 0.0009 |
|      |                      |                 |                                   |        |

4. Compare the computed *F* value with the tabular *F* values with  $f_1 = df_F$  and  $f_2 = df_H$  and make conclusions, or make conclusions by *p*-value. At  $\alpha$ =0.01, the tabular value of  $F_{(2,6)}$  is 13.74. The calculated distinctness *F*-ratio of candidate 1 is more than the tabulated  $F_{(2,6)}$  value. Therefore, we reject the null hypothesis that candidate 1 variety has a similar reaction to the disease as the reference variety. Similarly the calculated distinctness *F*-ratio for candidate 2 is greater than the tabulated *F* value of 9.21. Hence, the variety is also significantly different from the candidate variety 1.

## Example 2 Analysis of Over Years

\_ .. \_ \_

To take into account the effects of years, we will have three categorical variables, Year, Class and Variety and the test of distinctness will be conducted with three way contingency table. The following data in Table 7 are dummy example. We have here a case of Reference Variety 1 and Candidate 1 to demonstrate the process of statistical tests.

| Year Char | ootoriotio | Reference | Reference | Reference | Reference | Candidate | Candidate |
|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
| real Char | actenstic  | variety 1 | variety 2 | variety 3 | variety 4 | 1         | 2         |
| Year 1    | 1          | 12        | 6         | 1         | 7         | 34        | 32        |
|           | 2          | 23        | 33        | 18        | 27        | 6         | 8         |
|           | 3          | 9         | 19        | 9         | 15        | 6         | 4         |
| Year 2    | 1          | 10        | 6         | 1         | 7         | 27        | 37        |
|           | 2          | 21        | 23        | 18        | 26        | 7         | 10        |
|           | 3          | 7         | 19        | 11        | 17        | 5         | 4         |
| Year 3    | 1          | 12        | 8         | 1         | 9         | 27        | 38        |
|           | 2          | 23        | 23        | 14        | 15        | 7         | 12        |
|           | 3          | 8         | 16        | 10        | 15        | 5         | 3         |

1. Compute the  $\chi^2_H$  and degrees of freedom of interaction of year by characteristic

1.1 To get the contingency table of Characteristic × Year cell counts, we cannot consider the different varieties using cross sections of the two-way contingency table Characteristic ×Year, and we called it a Characteristic ×Year marginal table (Table 8).

Table 8 Marginal Table of Classified Category by Year

| Iable | Table of Classified Category by Teal |       |       |       |  |  |  |  |  |
|-------|--------------------------------------|-------|-------|-------|--|--|--|--|--|
|       | Characteristic                       | Year1 | Year2 | Year3 |  |  |  |  |  |
|       | 1                                    | 26    | 24    | 30    |  |  |  |  |  |
|       | 2                                    | 101   | 88    | 75    |  |  |  |  |  |
|       | 3                                    | 52    | 54    | 49    |  |  |  |  |  |

1.2 Compute the row totals (R), column totals (C), and grand total (G) of marginal table and the expected value of each of the  $r \times c$  cells as:

$$E_{ij} = \frac{R_i C_j}{G}$$

Where  $E_{ij}$  is the expected value of the (i, j)th cell,  $R_i$  is the total of the *i*th row,  $C_j$  is the total of the *j*th column, and *G* is the grand total. For our example, the expected value of the first cell is computed as:

$$E_{ij} = \frac{R_1 C_1}{G} = \frac{80 \times 179}{499} = 28.70$$

The results for all nine cells are shown in Table 9.

Table 9 The Expected Frequencies of Marginal Table

|   | Characteristic | Year 1 | Year 2 | Year 3 |
|---|----------------|--------|--------|--------|
| - | 1              | 28.70  | 26.61  | 24.69  |
|   | 2              | 94.70  | 87.82  | 81.47  |
|   | 3              | 55.60  | 51.56  | 47.84  |

1.3 The  $\chi^2_H$  value is the interaction of characteristic-by-year in contingency table and is computed as:

$$\chi_{H}^{2} = \frac{(24 - 28.70)^{2}}{28.70} + \frac{(101 - 94.70)^{2}}{94.70} + \dots + \frac{(49 - 47.84)^{2}}{47.84}$$
$$= 2.9630$$

And the degrees of freedom,  $df_H$ , is (r-1)(c-1)=(3-1)(3-1)=4

For our example, the tabular  $\chi^2$  value with 4 degree of freedom is 9.49 at the 5% level of significance. Because the computed heterogeneity  $\chi^2_H$  value, 2.963 is smaller than the corresponding tabular  $\chi^2$  value at 5% level of significance, the hypothesis of no heterogeneity existed cannot be rejected. Then we can compare the distinctness between candidate variety and reference variety.

2. Compute the  $\chi_F^2$  value for Candidate 1 fitting the expected distribution of reference variety1.

2.1 To compute the probability associated with each characteristic based on contingency table of reference varieties, we get first the contingency table of Characteristic ×Year. For reference variety 1, the two-way contingency table Characteristic ×Year is as Tab. 10.

Compute the row totals (R) and grand total (G), and the ratio of the total of the *i*th row( $R_i$ ) to the grand total(G) is the probability associated with each class.

#### TWC/30/38 Rev. page 7

| Table 10 Probability Distribution of Classified Categories of Reference Variety 1 |                |       |       |       |       |             |  |  |
|-----------------------------------------------------------------------------------|----------------|-------|-------|-------|-------|-------------|--|--|
|                                                                                   | Characteristic | Year1 | Year2 | Year3 | Total | Probability |  |  |
|                                                                                   | 1              | 12    | 10    | 12    | 34    | 0.272       |  |  |
|                                                                                   | 2              | 23    | 21    | 23    | 67    | 0.536       |  |  |
|                                                                                   | 3              | 9     | 7     | 8     | 24    | 0.192       |  |  |
|                                                                                   | Total          | 44    | 38    | 43    | 125   | 1.00        |  |  |

2.2 Compute the expected frequency of Candidate 1 and Chi-square fitting to the probability distribution of reference variety 1.

To compute the expected frequency of Candidate 1, we get first the contingency table of Characteristic ×Year (Table 11). For candidate 1, the two-way contingency table Characteristic ×Year is as follows (Table 12).

### Table 11 Frequencies of Classified Categories of Candidate 1

| Characteristic | Year1 | Year2 | Year3 | Total |
|----------------|-------|-------|-------|-------|
| 1              | 34    | 27    | 27    | 88    |
| 2              | 6     | 7     | 7     | 20    |
| 3              | 6     | 5     | 5     | 16    |

Table 12 Frequency Distribution of Class of Candidate 1 Fitted to Reference Variety 1

| Characteristic | Referer | ice variety 1 | Total of Candidate 1  |                       | $(O_i - E_i)^2$   |
|----------------|---------|---------------|-----------------------|-----------------------|-------------------|
|                | Total   | Probability   | Observed<br>Frequency | expected<br>Frequency | $\frac{C_i}{E_i}$ |
| 1              | 34      | 0.272         | 88                    | 33.728                | 87.33             |
| 2              | 67      | 0.536         | 20                    | 66.464                | 32.48             |
| 3              | 24      | 0.192         | 16                    | 23.808                | 2.56              |
| Total          | 125     | 1.00          | 124                   | 124                   | 122.37            |

And the degrees of freedom is (r-1)=(3-1)=2

The  $\chi_F^2$  value is the goodness of fit, and the degrees of freedom, df<sub>*F*</sub>, is also (*r*-1)= (3-1)=2.

3. Compute the *F* value, or Distinctness *F*-ratio for testing the Distinctness between Candidate 1 and reference variety as:

$$F = \frac{\chi_F^2/df_F}{\chi_H^2/df_H} = \frac{122.37/2}{2.96/4} = 82.68$$

Compare the computed *F* value with the tabular *F* values with  $f_1 = df_F$  and  $f_2 = df_H$  and make conclusions. At  $\alpha = 0.01$ , the tabular value of  $F_{(2,4)}$  is 21.20. The calculated distinctness *F*-ratio of candidate 1 is more than the tabulated  $F_{(2,4)}$  value. Therefore, we reject the null hypothesis that candidate variety 1 has a similar as the reference variety 1.

When F statistic and its p value of significance level being computed by computer program, we can also use the p value to make conclusions.

### COMPUTING BY PROGRAM DUST

9. DUST is a computer program for DUS test for new plant variety. It has been developed for use in China. The functions of DUST consisted of DUS tests, Outlier test, ANOVA, T-test, Fisher exact probability, and COYD with categorical characteristics. The user interface was showed as follow.

10. For demonstration data from TWC/30/29 (Table 1) were conducted by COYD with categorical characteristics. All operations in DUST are only carried out on the area of the array which you have selected (marked). If you try to run a function which expects data, and no area has been selected, you will get an error message. The area within the array can be selected by 'dragging out' the area (shadow area). Then select the *F-test of COYD for over years* From the *COYD with categorical characteristics* menu.

| Year   | Color    | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 | R17 | R18 | R19 | R20 | C1 | C2 |
|--------|----------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| Year 1 | 1 Green  | 0  | 1  | 0  | 30 | 33 | 72 | 3  | 82 | 52 | 50  | 0   | 0   | 0   | 25  | 0   | 0   | 0   | 83  | 54  | 0   | 30 | 5  |
|        | 2 White  | 17 | 7  | 5  | 0  | 12 | 2  | 4  | 2  | 16 | 17  | 12  | 9   | 12  | 0   | 0   | 0   | 6   | 5   | 12  | 6   | 9  | 9  |
|        | 3-5 Red  | 31 | 71 | 80 | 30 | 16 | 3  | 37 | 7  | 0  | 5   | 58  | 74  | 58  | 17  | 65  | 75  | 53  | 3   | 3   | 71  | 15 | 48 |
|        | 7 Orange | 52 | 21 | 20 | 40 | 39 | 23 | 56 | 9  | 32 | 28  | 30  | 17  | 30  | 58  | 35  | 25  | 41  | 9   | 31  | 23  | 46 | 38 |
| Year2  | 1 Green  | 3  | 0  | 3  | 28 | 25 | 76 | 2  | 82 | 7  | 37  | 0   | 0   | 0   | 22  | 0   | 0   | 0   | 92  | 30  | 0   | 21 | 9  |
|        | 2 White  | 12 | 8  | 0  | 4  | 2  | 4  | 2  | 0  | 33 | 9   | 2   | 8   | 10  | 10  | 10  | 0   | 1   | 1   | 13  | 18  | 1  | 5  |
|        | 3-5 Red  | 35 | 77 | 72 | 30 | 24 | 2  | 29 | 5  | 44 | 12  | 56  | 69  | 65  | 11  | 64  | 55  | 61  | 1   | 4   | 63  | 25 | 46 |
|        | 7 Orange | 50 | 15 | 25 | 38 | 49 | 18 | 67 | 13 | 16 | 42  | 42  | 23  | 25  | 57  | 26  | 45  | 38  | 6   | 53  | 19  | 53 | 40 |

11. Because some varieties had notes with zero plants in both years, a small value 0.5 will be add to these varieties by computer program for meeting the requirement of COYD test. For our example, heterogeneity  $\chi^2_H$  value is 8.95 and its *p* value is 0.0299. At  $\alpha$ =0.01, the hypothesis of no heterogeneity existed cannot be rejected. Then the *F* values and the *P* values for testing the hypothesis of no difference between candidate and reference varieties were calculated. The *F* values and the *P* values are showed as follow.

| Class              | Yr1               | Yr2      | Yr1               | Yr2      |         |                    |
|--------------------|-------------------|----------|-------------------|----------|---------|--------------------|
| 1                  | 485               | 407      | 0.1115            | 0.1112   |         |                    |
| 2                  | 144               | 147      | 0.0364            | 0.0363   |         |                    |
| 3                  | 757               | 779      | 0.1920            | 0.1915   |         |                    |
| 4                  | 619               | 667      | 0.1607            | 0.1603   |         |                    |
| Heterogeneity Chi- | Square=8.9520     |          | df=3              | p=0.0299 |         |                    |
| Candidate variety  | Fitted Chi-square | F Value  | Degree of Freedom |          | P Value | P <sub>dif</sub>   |
|                    |                   |          |                   |          |         | Value <sup>†</sup> |
| C1 - R1            | 790.7789          | 88.3351  | 3                 | 3        | 0.0020  | 0.0062             |
| C1 - R2            | 2690.7275         | 300.5716 | 3                 | 3        | 0.0003  | 0.0033             |
| C1 - R3            | 943.2095          | 105.3626 | 3                 | 3        | 0.0015  | 0.0063             |
| C1 - R4            | 22.1653           | 2.4760   | 3                 | 3        | 0.2380  | 0.6575             |
| C1 - R5            | 3.3627            | 0.3756   | 3                 | 3        | 0.7787  | 0.9224             |
| C1 - R6            | 393.2898          | 43.9330  | 3                 | 3        | 0.0056  | 0.0036             |
| C1 - R7            | 440.7920          | 49.2393  | 3                 | 3        | 0.0047  | 0.0073             |

| TWC/30/38 Rev. |  |
|----------------|--|
| page 9         |  |

| C1 - R8       444.6931       49.6751       3       3       0.0047       0.0004         C1 - R9       86.6767       9.6823       3       3       0.0472       0.1361         C1 - R10       67.8746       7.5820       3       3       0.0651       0.1621         C1 - R14-0.5       5211.6370       582.1735       3       3       <0.0001                                                                                                                                                                                                                                                                                                                                                            |              |           |          |   |   |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----------|---|---|---------|---------|
| C1 - R10         67.8746         7.5820         3         3         0.0651         0.1621           C1 - R11+0.5         5211.6370         582.1735         3         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C1 - R8      | 444.6931  | 49.6751  | 3 | 3 | 0.0047  | 0.0004  |
| C1 - R11+0.5       5211.6370       582.1735       3       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C1 - R9      | 86.6767   | 9.6823   | 3 | 3 | 0.0472  | 0.1361  |
| C1 - R12+0.5       5315.4726       593.7727       3       3       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1 - R10     | 67.8746   | 7.5820   | 3 | 3 | 0.0651  | 0.1621  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1 - R11+0.5 | 5211.6370 | 582.1735 | 3 | 3 | <0.0001 |         |
| C1 - R147.70940.8612330.54740.8896C1 - R15+0.55237.0772585.015433<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C1 - R12+0.5 | 5315.4726 | 593.7727 | 3 | 3 | <0.0001 |         |
| C1 - R15+0.5       5237.0772       585.0154       3       3       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1 - R13+0.5 | 5249.9543 | 586.4538 | 3 | 3 | <0.0001 |         |
| C1 - R16+0.5       5408.8145       604.1995       3       3       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1 - R14     | 7.7094    | 0.8612   | 3 | 3 | 0.5474  | 0.8896  |
| C1 - R17+0.5       5206.1159       581.5568       3       3       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1 - R15+0.5 | 5237.0772 | 585.0154 | 3 | 3 | <0.0001 |         |
| C1 - R18       884.9295       98.8523       3       3       0.0017       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C1 - R16+0.5 | 5408.8145 | 604.1995 | 3 | 3 | <0.0001 |         |
| C1 - R19180.214320.1311330.01720.1202C1 - R20+0.55303.0751592.387833<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C1 - R17+0.5 | 5206.1159 | 581.5568 | 3 | 3 | <0.0001 |         |
| C1 - R20+0.5         5303.0751         592.3878         3         3         <0.0001           C2 - R1         65.6178         7.3299         3         3         0.0680         0.1432           C2 - R2         237.7694         26.5604         3         3         0.0116         0.1404           C2 - R3         105.3115         11.7640         3         3         0.0363         0.2866           C2 - R4         77.6460         8.6736         3         3         0.0546         0.0522           C2 - R5         107.4157         11.9990         3         3         0.0354         0.0786           C2 - R6         1749.5812         195.4395         3         0.0046         <0.0011 | C1 - R18     | 884.9295  | 98.8523  | 3 | 3 | 0.0017  | <0.0001 |
| C2 - R165.61787.3299330.06800.1432C2 - R2237.769426.5604330.01160.1404C2 - R3105.311511.7640330.03630.2866C2 - R477.64608.6736330.05460.0522C2 - R5107.415711.9990330.03540.0786C2 - R61749.5812195.4395330.0006<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C1 - R19     | 180.2143  | 20.1311  | 3 | 3 | 0.0172  | 0.1202  |
| C2 - R2       237.7694       26.5604       3       3       0.0116       0.1404         C2 - R3       105.3115       11.7640       3       3       0.0363       0.2866         C2 - R4       77.6460       8.6736       3       3       0.0546       0.0522         C2 - R5       107.4157       11.9990       3       3       0.0354       0.0786         C2 - R6       1749.5812       195.4395       3       0.0006       <0.001                                                                                                                                                                                                                                                                     | C1 - R20+0.5 | 5303.0751 | 592.3878 | 3 | 3 | <0.0001 |         |
| C2 - R3105.311511.7640330.03630.2866C2 - R477.64608.6736330.05460.0522C2 - R5107.415711.9990330.03540.0786C2 - R61749.5812195.4395330.0006<0.0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2 - R1      | 65.6178   | 7.3299   | 3 | 3 | 0.0680  | 0.1432  |
| C2 - R477.64608.6736330.05460.0522C2 - R5107.415711.9990330.03540.0786C2 - R61749.5812195.4395330.0006<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2 - R2      | 237.7694  | 26.5604  | 3 | 3 | 0.0116  | 0.1404  |
| C2 - R5107.415711.99903330.03540.0786C2 - R61749.5812195.4395330.0006<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2 - R3      | 105.3115  | 11.7640  | 3 | 3 | 0.0363  | 0.2866  |
| C2 - R61749.5812195.4395330.0006<0.0001C2 - R755.20896.1672330.08470.1143C2 - R8912.0739101.8846330.0016<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2 - R4      | 77.6460   | 8.6736   | 3 | 3 | 0.0546  | 0.0522  |
| C2 - R755.20896.1672330.08470.1143C2 - R8912.0739101.8846330.0016<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2 - R5      | 107.4157  | 11.9990  | 3 | 3 | 0.0354  | 0.0786  |
| C2 - R8912.0739101.8846330.0016<0.0001C2 - R9134.890215.0681330.02590.0189C2 - R10416.470346.5224330.00520.0051C2 - R11+0.5176.628819.7306330.0177C2 - R12+0.5224.973025.1309330.0157C2 - R13+0.5192.111121.4601330.0157C2 - R14192.246021.4751330.0163C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R182448.3867273.5006330.0012C2 - R191144.8876127.8913330.0012                                                                                                                                                                                                                                                                                                        | C2 - R6      | 1749.5812 | 195.4395 | 3 | 3 | 0.0006  | <0.0001 |
| C2 - R9134.890215.0681330.02590.0189C2 - R10416.470346.5224330.00520.0051C2 - R11+0.5176.628819.7306330.0177C2 - R12+0.5224.973025.1309330.0126C2 - R13+0.5192.111121.4601330.0157C2 - R14192.246021.4751330.0157C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R182448.3867273.5006330.0004C2 - R191144.8876127.8913330.0012                                                                                                                                                                                                                                                                                                                                              | C2 - R7      | 55.2089   | 6.1672   | 3 | 3 | 0.0847  | 0.1143  |
| C2 - R10416.470346.5224330.00520.0051C2 - R11+0.5176.628819.7306330.0177C2 - R12+0.5224.973025.1309330.0126C2 - R13+0.5192.111121.4601330.0157C2 - R14192.246021.4751330.0157C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.00120.0027                                                                                                                                                                                                                                                                                                                                                                          | C2 - R8      | 912.0739  | 101.8846 | 3 | 3 | 0.0016  | <0.0001 |
| C2 - R11+0.5176.628819.7306330.0177C2 - R12+0.5224.973025.1309330.0126C2 - R13+0.5192.111121.4601330.0157C2 - R14192.246021.4751330.0157C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.00120.0027                                                                                                                                                                                                                                                                                                                                                                                                               | C2 - R9      | 134.8902  | 15.0681  | 3 | 3 | 0.0259  | 0.0189  |
| C2 - R12+0.5224.973025.1309330.0126C2 - R13+0.5192.111121.4601330.0157C2 - R14192.246021.4751330.0157C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.0004<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C2 - R10     | 416.4703  | 46.5224  | 3 | 3 | 0.0052  | 0.0051  |
| C2 - R13+0.5192.111121.4601330.0157C2 - R14192.246021.4751330.01570.0847C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.0004<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C2 - R11+0.5 | 176.6288  | 19.7306  | 3 | 3 | 0.0177  |         |
| C2 - R14192.246021.4751330.01570.0847C2 - R15+0.5187.514820.9466330.0163C2 - R16+0.5356.043339.7723330.0065C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.00120.0001C2 - R191144.8876127.8913330.00120.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2 - R12+0.5 | 224.9730  | 25.1309  | 3 | 3 | 0.0126  |         |
| C2 - R15+0.5       187.5148       20.9466       3       3       0.0163         C2 - R16+0.5       356.0433       39.7723       3       3       0.0065         C2 - R17+0.5       180.8525       20.2024       3       3       0.0171         C2 - R18       2448.3867       273.5006       3       3       0.0004       <0.0001                                                                                                                                                                                                                                                                                                                                                                        | C2 - R13+0.5 | 192.1111  | 21.4601  | 3 | 3 | 0.0157  |         |
| C2 - R16+0.5356.043339.7723330.0065C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.0004<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C2 - R14     | 192.2460  | 21.4751  | 3 | 3 | 0.0157  | 0.0847  |
| C2 - R17+0.5180.852520.2024330.0171C2 - R182448.3867273.5006330.0004<0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2 - R15+0.5 | 187.5148  | 20.9466  | 3 | 3 | 0.0163  |         |
| C2 - R18       2448.3867       273.5006       3       3       0.0004       <0.0001         C2 - R19       1144.8876       127.8913       3       3       0.0012       0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C2 - R16+0.5 | 356.0433  | 39.7723  | 3 | 3 | 0.0065  |         |
| C2 - R19 1144.8876 127.8913 3 3 0.0012 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2 - R17+0.5 | 180.8525  | 20.2024  | 3 | 3 | 0.0171  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2 - R18     | 2448.3867 | 273.5006 | 3 | 3 | 0.0004  | <0.0001 |
| C2 - R20+0.5 218.9958 24.4632 3 3 0.0131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C2 - R19     | 1144.8876 | 127.8913 | 3 | 3 | 0.0012  | 0.0027  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2 - R20+0.5 | 218.9958  | 24.4632  | 3 | 3 | 0.0131  |         |

<sup>†</sup> Probability values from document TWC/30/29

#### CONCLUSION

12. Applying *F*-ratio analysis to distinctness test of variety protection trials expands the application to categorical data. The method proposed here is similar to the analysis of variance (ANOVA) of quantitative data, which is different from the previous Chi-square test of categorical data. The method can also be applied to testing the distinctness of categorical characteristics of biology in the field of bioinformatics research.

#### ACKNOWLEDGEMENTS

13. This work was partially supported by the National Basic Research Program of China (Grant No. 2010CB126201). The authors thank Dr. Wang Xiao-wei for suggestions.

#### REFERENCE

Agresti, A. 2002: Categorical Data Analysis 2nd edition. Wiley, New York

K. Krishnamoorthy, 2006: Handbook of statistical distributions with applications, London/Boca Raton: Chapman & Hall/CRC

M. W. Birch. 1963: Maximum Likelihood in Three-Way Contingency Tables, Journal of the Royal Statistical Society. Series B (Methodological), 25(1):220-233

Patterson, H.D. & Weatherup, S.T.C. 1984: Statistical criteria for distinctness between varieties of herbage crops. J. Agric. Sci. Camb. 102, 59-68.

Sokal, R. R. and F. J. Rohlf. 1995: Biometry: the principles and practice of statistics in biological research. 3rd edition. W. H. Freeman and Co., New York

UPOV, 2009: Trial design and techniques used in the examination of distinctness, uniformity and stability, TGP/8/1 Draft 13, Geneva.

[End of document]