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Some remarks on the combined over years distinctness criterion 

 
Summary 

 
The combined over years distinctness (COYD) criterion (TWC/14/7) is based on a mixed 
model, which implies that the variance-covariance structure has the so-called compound sym-
metry (CS) form. The LSD computed for COYD produces a valid test only when the CS as-
sumption is met. A measure for the departure from the CS assumption is suggested and com-
puted for a Lolium perenne data set of the Bundessortenamt. The results indicate appreciable 
departure from CS. It is shown, that under departure from CS, an increased sampling variation 
is to be expected among variety x year mean squares for different groups of years. This may 
partly explain observations reported in past TWC documents. It is concluded that the validity 
of the LSD procedure suggested for COYD may be hampered by departure from the CS as-
sumption. It therefore appears necessary to check the validity of CS assumption over a number 
of crops and traits.  
 
The COYD procedure requires balanced data sets. If the CS assumption is tenable for a three-
year data set, balanced subsets of two or three years may be formed and analysed by COYD 
for simplicity. If  the balanced subsets suffer from a lack of residual degrees of freedom (< 
20), the unbalanced three-year data may be analysed by the method of fitting constants 
(FITCON). This seems preferable to long-term LSD (TWC/14/19), since it cannot be ruled 
out that time trends in variability and changes in the composition of varieties invalidate the CS 
assumption. 
 
TWC is encouraged to search for powerful and simple alternatives to COYD for data that vio-
late the CS assumption. Under departure from CS, the paired t-test may be used for assessing 
distinctness. Unfortunately, this test has low power due to the lack of degrees of freedom. To 
compensate for the loss of power, the significance level could be reduced from 1% to 5%. Ap-
propriate choice of significance level requires further study and should involve power consid-
erations. 
 
 
1. Background 
 
Document TWC/14/7 describes the Combined Over Years Distinctness (COYD) criterion for 
deciding whether two varieties are distinct. The criterion is based on a two-way analysis of 
variance (ANOVA) with factors variety and year. Two varieties are considered distinct, when 
their difference is statistically significant at the 1% level by an LSD (least significant 
difference) test. The error term for computing the LSD is the variety x year mean square (MS). 
When the analysis is based on variety x year means, as will be assumed subsequently, this is 
equivalent to the residual MS. The method requires a balanced data set, i.e. a complete two-
way table of variety x year means. Many varieties are tested for only two years, while others 
are tested for three years. In order to compute the COYD criterion for varieties subjected to 
three years of testing, data from varieties tested for only two years may be discarded to obtain 
a complete two-way table. Similarly, a balanced two-way table for varieties under test for only 
two years can be obtained by dropping data on varieties tested for more than two years. 
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A problem with this approach is a loss of degrees of freedom (d.f.) for the variety x year mean 
square. The d.f. can become so small that the LSD is excessively large. The reason for this is 
that the variety x year interaction variance cannot be estimated with good accuracy. Therefore, 
TWC has agreed to use the long-term LSD, when there are less than 20 d.f. (TWC/14/19). The 
long-term LSD is based on the variety x year mean square from (possibly unbalanced) data 
accumulated over several years. A potential problem with long-term LSD is that the set of va-
rieties which are to be compared is not identical to the set of varieties used for computing the 
LSD. This may yield an inappropriate LSD when the variances of varieties differ between 
both sets. Thus, it may be preferable to use unbalanced three-year data for computing the 
LSD. In this document we critically assess the merits and demerits of these different 
approaches. 
 
 
2. Some problems 
 
Long-term LSD has been the subject of several TWC documents, and some problems concer-
ning the use of long-term LSD raised in these documents are listed below: 
(a) Variation between varieties close together can be less than variation between varieties fur-
ther apart (TWC/VIII/10). 
(b) Variation can be related to level of expression of a character (TWC/VIII/10). 
(c) LSD in groups of 2-3 years may vary markedly between groups of years (TWC/12/4) and it 
may be very different from long-term LSD (TWC/VIII/10). 
 
These problems have led to uncertainty as to which method of computing LSD is preferable. 
We will give a recommendation at the end of this document. Before doing so, it will be argued 
in the subsequent sections that all of the possible approaches to computing LSD (two years, 
balanced; three years, balanced; long-term, unbalanced; three years, unbalanced) are based on 
the same underlying statistical model. It is pointed out that this model is quite restrictive and 
the evidence reported above (problems a-c) suggests that the model may not be appropriate in 
all circumstances, so that neither of the above-mentioned options for computing LSD is en-
tirely satisfactory. To substantiate this view, we will now introduce a mixed modelling frame-
work. 
 
 
3. Mixed modelling 
 
Computing the LSD using the variety x year interaction mean square as an error term implies 
a mixed model perspective, where years are considered as a random factor, while varieties are 
taken as fixed. COYD is based on the following model for variety means: 
 
y u v eij j i ij= + + +µ     , where                                                                                             (1) 
 
yij = yield of variety i (i = 1, ..., I) in year j (j = 1,..., J) 
µ = fixed overall mean 
uj = random effect of year j, distributed with zero mean and variance σu

2  
vi = fixed effect of variety i 
eij = random residual term, comprising variety x year interaction plus mean error distributed  
        with zero mean and variance σe

2  
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The random effects uj and eij are assumed to be independent. This is the underlying model, no 
matter how the LSD is computed (two years, balanced; three years, balanced; long-term, un-
balanced; three years, unbalanced), as long as the interaction MS is used as an error term. The 
COYD procedure is designed to detect differences among variety main effects vi, while variety 
x year interactions are regarded as “error“-effects not contributing to the distinctness of varie-
ties. This latter assumption is worthy of some discussion (see a second paper to be presented 
by first author at this TWC meeting), but in this contribution we will not consider this issue. 
Here, it will be assumed that differences among variety main effects are, in fact, of primary 
interest. The main focus is on some statistical problems arising from the application of the 
mixed model (1) to the computation of an LSD for detecting differences among variety main 
effects. 
 
When model (1) holds, it is best to use all available data in order to estimate the residual error 
variance σe

2  with good accuracy. The problems a-c mentioned in the foregoing section imply, 
however, that the simple mixed model (1) is not generally valid. In statistical terms, it implies 
that there may be some sort of variance heterogeneity between varieties and/or between years, 
and that the usual LSD is biased. Such deviations can be expected to be quite common, be-
cause, as will be argued subsequently, model (1) is extremely restrictive as regards the vari-
ance-covariance structure. Under model (1) the variance of an observation yij is 
 
Var(yij) = σu

2  + σe
2  (2) 

 
The variance is independent of both years and varieties. This assumption is not in accordance 
with a large body of literature on yield stability, which suggests that the variance may depend 
on variety. Moreover, Slafer and Kernich (1996), in investigating long-term yield data of 
Australian yield trials with cereals (1900-1992), found year-dependent trends in variability. 
This may be a result of the change in the set of varieties under trial and variance differences 
among varieties (also see problem c). The shift in variance may also be caused by changes in 
management practices (fertilisation, pesticide use etc.). The occasionally observed dependence 
of the variance on the mean (problem b) is a special case of variance heterogeneity, which 
renders the simple model (1) inappropriate. 
 
According to model (1) the covariance of two observations yij and yi’j in the same year is 
 
Cov(yij, yi’j) = σu

2  (3) 
 
which is also independent of both years and varieties. It is often found, however, that the co-
variance varies among pairs of varieties. For example, two varieties, which are genetically 
closely related and which therefore show a very similar response to changing environmental 
conditions, are expected to have a comparatively large covariance (see problem a). By con-
trast, two varieties with quite different response patterns will usually have a smaller 
covariance (Piepho, 1996).  
 
The variance-covariance structure implied by model (1) is termed compound symmetry (CS) 
in the repeated measures literature (Winer et al., 1991; Hand and Crowder, 1996). Instead of 
working with the simple model (1), it is instructive to consider a more general model, which 
encompasses model (1) as a special case (Piepho, 1996). The model reads 
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yij = µi + fij (4) 
 
where µi is the expected value of the i-th variety and fij is a random deviation of yij from the 
expected value µi in the j-th year. Under this general model, it will be assumed that 
Var(yij) = Var(fij) = σii       and  (5) 
 
Cov(yij, yi’j) = Cov(fij, fi’j) =  σii’ (6) 
 
Under this model, each variety has its own variance (σii) and each pair of varieties has its own 
covariance (σii’). This variance-covariance structure may be termed “unstructured“, because 
no specific model is imposed on the variances and covariances. The model is still restrictive 
because the variance-covariance structure is independent of years, but it is clearly much more 
flexible than model (1). Model (1) is obtained as a special case of model (4) by letting µi = µ + 
vi and fij = uj + eij. Partitioning the random deviation as fij = uj + eij and assuming that random 
effects are independent with constant variance induces the CS structure. Scheffé (1959), who 
considers the general model (4) at some length, cautions the reader regarding the rather re-
strictive CS assumption. He says: „We do not recommend (Scheffé’s italics) that this assump-
tion ordinarily be made in applications, where there usually exists no real symmetry corre-
sponding to it.“ This caution probably also applies to DUS trails. 
 
We may now look at the expectation of the variety x year mean square (MSint) under the gen-
eral model (4). For balanced data the expectation is known to be (Scheffé, 1959, § 8.1) 
 
E(MSint) = ( ) ( )..I ii

i
− −− ∑1 1 σ σ     where (7) 

 
σ σ.. = −

′
′
∑∑I ii

ii

2  (8) 

 
Equation (7) shows that the variety x year mean square will tend to increase as the variances 
σii of the varieties increase (problem a). It also shows that an increase in the covariances σii’ 
will reduce the variety x year mean square. This may explain, why, e.g., analyses within 
maturity groups of perennial ryegrass can produce smaller variety x year variance components 
than analyses comprising several maturity groups (TWC/VIII/10; compare problem a). Within 
a maturity group, the average of all covariances are probably larger than in a bulk of several 
groups. 
 
It is stressed that under the general model (4) the usual analysis-of-variance F-test is not valid, 
nor is the LSD procedure. This is so because the variance of a difference depends on the pair 
of varieties considered. A valid comparison of varieties under the general model is possible by 
conducting paired t-tests separately for each pair. Unfortunately, this approach aggravates the 
problem of lack of degrees-of-freedom (d.f.), since there are only J −1 d.f. for such a paired t-
test. For example, at a nominal Type I error of 1%, the critical t-value for 1 d.f. (two years of 
paired data) is 63.657. This is 22.5 times the critical t-value for 20 d.f. (2.845). Thus, for two 
years of data, the critical difference for a paired t-test is expected to be 22.5 times as large as 
the COYD-LSD based on 20 residual d.f., assuming the CS assumption is valid. 
Consequently, the paired t-test is not a useful approach for two-year data. By comparison, the 
critical t-value for 2 d.f. (three years of paired data) is 9.925, i.e. 3,5 times the value for 20 
d.f., which seems more acceptable, but still involves a considerable loss of power. To 
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compensate the loss of power, one might consider reducing the significance level from 1% to 
5%. The critical t-value at the 5% level of significance for 2 d.f. is 4.303, which is only 1.5 
times the 1% value for 20 d.f. A more thorough analysis for the choice of significance level 
should involve joint consideration of Type I error, power and minimum difference to be de-
tected. 
An alternative to the paired t-test is to find a subset of varieties, for which both the variances 
and the covariances are nearly homogeneous, i.e. for which the CS assumption is not too se-
verely violated. Finding such subsets may be difficult in practice. The need to identify such 
subsets does not usually make this approach a very practical solution for routine use. Some-
times, certain covariates such as maturity group may be used to form appropriate groups. 
 
The foregoing discussion has shown that if variety comparisons are to be based on LSD with 
MSint as an error term, it is necessary to check the validity of the implicit CS assumption. It 
would seem desirable to investigate larger data sets (many years) for various crops and traits 
to check in which cases the CS assumption is tenable. The next section proposes a measure 
that can be used for this purpose. 
 
 
4. A measure of departure from compound symmetry 
 
Box (1954) suggested a measure ε of the departure from the CS assumption. More generally, ε 
is a measure of departure from the so-called Huynh-Feldt (1976) condition, which in the pre-
sent case implies that the variance of a difference of two varieties is the same for all pairs of 
varieties. ε is given by 
 

ε
σ σ

σ σ σ
=

−

− − +






′

′
∑∑∑

I

I I I

ii

ii i
iii

2 2

2 2 2 21 2

( )

( )

..
. ..

 (9) 

 
where σ σi ii

i
I. = −

′
′
∑1 . It can be shown that (I − 1)−1 ≤ ε ≤ 1. Under CS we have ε = 1. The 

larger the deviation from CS, the smaller becomes ε. One may estimate ε by simply plugging 
in the sample variances and covariances, as suggested by Geisser and Greenhouse (1958). It 
has been shown, however, that for ε > 0.75 and J < 2I this estimate may be seriously biased. 
Huynh and Feldt (1976) therefore suggested a less biased estimator, which is preferable par-
ticularly when the true ε is close to 1. 
 
Table 1: Geisser-Greenhouse (1958) (G-G) estimate of ε and Huynh-Feldt (1976) (H-F) esti-
mate of ε for Lolium perenne L. data set of Bundessortenamt. 
                   Estimate of ε 
Trait Code I§ G-G H-F 
  
Flag leaf length  M11 112 0.0219 0.0380 
Flag leaf width  M12 112 0.0426 0.2199 
Length of longest stem  M21 111 0.0388 0.1461 
Length of inflorescence  M22 111 0.0350 0.1051 
Time of inflorescence emergence  M31 113 0.0222 0.0393 
Natural plant height at inflorescence emergence  M41 113 0.0347 0.1061 
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Plant growth habit at inflorescence emergence  M42 113 0.0379 0.1414 
Plant length in autumn of year of sowing  M51 115 0.0422 0.2341 
Plant growth habit in autumn of year of sowing  M52 115 0.0310 0.0807 
 
(§I = number of varieties) 
We estimated ε for a Lolium perenne L. data set of the Bundessortenamt (see Table 1). A ba-
lanced subset was used with varieties that were tested in seven consecutive years. Emphasis is 
given here to the bias-corrected Huynh-Feldt estimate of ε. The Geisser-Greenhouse estimate 
is reported for comparison. The results indicate that there is notable departure from the 
Huynh-Feldt condition. Thus, use of the COYD-LSD procedure seems problematic for this 
data set.  
 
 
5. Variance-mean dependence 
 
A plot of variety variances [s J y yi ij i

j

2 1 21= − −− ∑( ) ( ). ] vs. variety means ( yi.) revealed a 

variance-mean dependence for traits M11, M31 and M51 (problem b) (see Figs. 1, 3 and 5). 
After a log-transform, this dependence apparently disappeared for traits M11 and M51 (see 
Figs. 2 and 4), but the estimates of ε remained rather unaffected (M11: G-G-ε = 0.0204; H-F-ε 
= 0.0334; M51: G-G-ε = 0.0446; H-F-ε = 0.3203). Heading date (M31) is an exceptional case, 
because the variance decreases with the mean. We have not found a simple transformation 
that removes variance heterogeneity. This trait may be appropriately analysed by the modified 
joint regression analysis proposed in TWC/14/7. 
 
 
6. Pairs of years 
 
In the past it has been observed that LSD may vary notably among different groups of years, 
the variation being larger than one would usually expect by pure sampling variation (problem 
c). It will be shown in the next section that under the CS assumption, sampling variation is, in 
fact, expected to be relatively small, but that sampling variation of LSD (via MSint) can be 
substantially increased, when the CS assumption is violated. Thus, a large variation among 
groups of years may be seen as evidence of departure from the CS assumption. 
 
In this section we present some further empirical evidence of large variation among groups of 
years. For the Lolium data set (years 1990-1996), we estimated MSint for balanced subsets 
comprising only two years of data. The subsets contained only those varieties, for which the 
trait under consideration was observed in all seven years. Thus, variation among pairs of years 
cannot be caused by variation in the composition of varieties. The results are given in Table 2. 
 
The variation of MSint among pairs of years is considerable. Note that two pairs of years are 
not independent when the same year is present in both pairs. Thus, the coefficient of variation 
(CV) of MSint reported in Table 2 (CV*) is likely to be a biased estimate of the CV for inde-
pendent pairs of years. For this reason, the distribution of CV* under the CS assumption was 
simulated. Data sets of the same dimensions as the balanced subsets of the Lolium data used 
in Table 2 (seven years, 111 to 115 varieties) were generated according to model (1). The 
effects µ, uj and vi were set equal to zero. Note that MSint is free of these effects. The residual 
eij was generated from a standard normal distribution. The CV of MSint is independent of the 
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variance of the random normal deviates eij. 10,000 data sets were simulated. For each data set, 
MSint was computed for all pairs of years. Then the CV of all pairwise MSint values of a 
simulated data set was computed (CVsim). The distribution of the 10,000 CVsim values consti-
tutes the simulated distribution of CV* under CS. The 95% percentile and the mean (expected 
value) of this distribution are reported in Table 2. A CV* value markedly above the 95% per-
centile indicates departure from the assumption of CS (and normality). For all traits, CV* is 
clearly larger than the 95% percentile, so the CS assumption is doubtful. It is noted that there 
is a formal test for the CS assumption (see, e.g., Winer et al., 1991, and Hand and Crowder, 
1996), but this is not applicable unless J > I, which is rarely the case in variety testing. Thus, 
one has to rely on unconventional procedures as those suggested here for checking the CS 
assumption. 
 
Table 2: MSint for pairs of years using the Lolium data set and estimated coefficient of 
variation (CV*) of MSint values across pairs. All 21 possible pairs out of seven years were 
formed. For a trait, the same subset of varieties was used in each pair. 
  
     Trait 
 
 M11 M12 M21 M22 M31 M41 M42 M51 M52 
Year pair  x 10-4 x 10-1 x 10-3 x 10-2 x 10-2 x 10-3 x 10-1 x 10-2  
 
1-2 248 148 136 138 234  95 335 344  582 
1-3 223 134 245 174 598 184 289 365  316 
1-4 512 127 105 479 201 108 168 454  423 
1-5 151 118 111 364 264  87 126 458  405 
1-6 251 129 112 365 192 163 210 455  379 
1-7 741 175 113 349 573 213 391 474  595 
2-3 163  74 217 161 221 152 314 396  879 
2-4 244  99 129 458 101  99 352 512  989 
2-5  88  66 183 289 111 110 224 431  612 
2-6 158  97 149 368 130 173 395 429  748 
2-7 270 105 139 298 230 228 508 590 1274 
3-4 430 120 261 517 221 139 420 661  256 
3-5 155  87 131 392 164 193 228 541  468 
3-6 249 116 142 428 377 318 320 447  320 
3-7 479 135 127 406 125 409 604 563  384 
4-5 205  63 149 340  59 106 139 644  503 
4-6 103  56 144 332 138 170 211 517  311 
4-7 171 117 115 310 220 227 387 631  367 
5-6  86  63 107 219 171 132 141 627  321 
5-7 337  66  83 190 192 226 336 954  610 
6-7 272  98  95 240 372 370 460 416  480 
          
d.f. 111 111 110 110 112 112 112 114 114 
CV* 61.1 30.8 33.1 33.0 60.4 47.8 41.1 26.3 48.0 
 
95% percen- 16.4 16.4 16.4 16.4 16.3 16.3 16.1 16.1 16.1 
tile of CVsim (#) 
Mean of CVsim(#) 12.3 12.3 12.4 12.4 12.3 12.3 12.3 12.1 12.1 
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(#): Simulated under the assumptions of CS and normality (n = 10,000). A value of CV* ex-
ceeding simulated 95% percentile of CVsim indicates departure from CS. For details see text. 
 
7. The variance of MSint 
 
In follows from results in Box (1954) that the variance of MSint is 
 

Var(MSint) = 
[ ]2

1 1

2
E( )

( )( )
MS

I J
int

− − ε
 (10) 

 
The coefficient of variation of MSint is 
 

[ ]
CV

Var

E
( )

( )

( ) ( )( )
MS

MS

MS I Jint
int

int

= =
− −2

2
1 1 ε

 (11) 

 
Under CS (ε = 1) we can therefore expect a low coefficient of variation of MSint, while for 
larger departures from CS (ε < 1) the uncertainty of MSint can be substantial. For example, 
when J = 2 and I = 111, we have CV(MSint) = 0.13 = 13%, when the CS assumption is met. By 
contrast, when ε = 0.1, one finds CV(MSint) = 0.42 = 42%. Thus, under departure from CS, a 
much larger variability of MSint among pairs of years can occur than when the CS assumption 
is met. For the Lolium data the H-F estimate of ε is much smaller than 1 for all traits (Table 
1). This may explain why the variation among MSint between different pairs of years (Table 2) 
is larger than expected under CS. It should be noted, however, that the CV of MSint is also 
influenced by non-normality. Specifically, the CV will increase with the kurtosis (standardised 
forth moment) (Searle et al., 1992, p. 412). 
 
 
8. Three-year data versus long-term data 
 
Table 3: MSint for triplets of consecutive years and for complete data set (seven years). Due to 
unbalancedness of the complete data set, the subset of varieties may differ among triplets. 
  
     Trait 
 
 M11 M12 M21 M22 M31 M41 M42 M51 M52 
Years  x 10-4 x 10-1 x 10-3 x 10-2 x 10-2 x 10-3 x 10-1 x 10-2  
 
1-7 257 101 138 306 207 192 305 590 478 
          
1-3 209 118 201 163 358 142 314 361 587 
2-4 288 100 203 382 188 126 352 506 636 
3-5 256 88 180 428 143 136 240 696 375 
4-6 131 62 141 299 119 135 165 685 346 
5-7 237 80 99 217 198 230 304 755 446 
          
Average  224 89 165 298 201 154 275 601 478 
of triplets  
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Table 4: Huynh-Feldt estimates of ε for triplets of consecutive years and for complete data set 
(seven years). Due to unbalancedness of the complete data set, the subset of varieties may 
differ among triplets. For each subset, only those varieties tested in all years in th subset, were 
included. 
 
     Trait 
 
 M11 M12 M21 M22 M31 M41 M42 M51 M52 
Years 
 
1-7 0.038 0.220 0.146 0.105 0.039 0.106 0.141 0.234 0.081 
 
1-3 0.308 0.115 0.160 1.000 0.027 0.127 1.000 1.000 0.049 
2-4 0.047 0.232 0.111 0.049 0.092 0.304 0.732 0.194 0.034 
3-5 0.030 0.119 0.115 0.539 0.031 0.138 0.033 0.306 0.109 
4-6 0.032 1.000 0.592 0.215 0.046 0.108 0.196 0.119 0.132 
5-7 0.021 0.077 0.248 1.000 0.067 0.040 0.034 0.025 0.062 
 
Average  0.082 0.308 0.245 0.560 0.053 0.143 0.399 0.329 0.077 
  of triplets   
 
We investigated the Lolium data with respect to the question, whether three-year data are 
preferable to long-term data (seven years in this example). From the seven years, all five pos-
sible triples of three consecutive years were formed. For each triplet, both MSint and ε were 
computed and averaged across triplets. These results were compared to MSint and ε  computed 
for the long-term data. Both MSint (Table 3) and estimates of ε (Table 4) vary markedly among 
triplets. With many traits, the averages of MSint across triplets are somewhat smaller than MSint 
for the complete data. Similarly, the average of estimates of ε across triplets are larger than for 
the complete data set in all traits except M52. This is weak indication that analysis based on 
three years of (unbalanced) data may be preferable to analysis based on long-term data. 
 
 
9. Alternative methods of analysis for unbalanced data under compound 
symmetry 
 
In the foregoing sections, it has been shown that the CS assumption implicit in the mixed 
model used for COYD may be violated, thus invalidating the LSD procedure. If it has been 
established that for a given data set (possibly a subset of a larger data set) the CS assumption 
is met, an analysis based on model (1) is appropriate. It then needs to be decided, how the data 
should be analysed. For example, the question arises whether a balanced subset should be 
formed or not. A balanced subset simplifies the analysis, but by forming a subset, valuable in-
formation on the variance components is discarded. In order to gain maximum accuracy of 
variance component estimates, it is desirable to use all available information. This will usually 
require the analysis of an unbalanced data set. Here, we wish to point out two options for un-
balanced data.  
 
One option is the method of fitting constants (FITCON; see TWC/12/4). In this analysis, years 
are formally treated as a fixed, despite the fact that the year factor is random. Variety means 
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adjusted for year effects are estimated by the method of least squares. An estimate of the vari-
ance component σe

2  is computed from the residual mean square after fitting main effects for 
varieties and years. This mean square is then used to compute standard errors of variety means 
and differences of variety means. Due to the unbalancedness of the data, no single LSD can be 
computed. This type of analysis is analogous to an analysis of an incomplete block design 
without recovery of inter-block information (Cochran and Cox, 1957), with years correspon-
ding to incomplete blocks. Thus, FITCON does not allow recovery of “inter-year“ infor-
mation. 
Alternatively, the year main effect may be regarded as random. This allows the recovery of 
inter-year information. The recovery of inter-year information is based on a weighted least 
squares analysis, where the weights depend on the variances of both year main effects uj and 
residuals eij. The variance components can be estimated by standard procedures, e.g. by the 
REML (Restricted Maximum Likelihood) method, which is readily available with common 
statistical packages (GENSTAT, SAS). When the variance components are known, the 
weighted least squares estimator (WLSE) is best linear unbiased, but in practice estimates of 
variance components have to be used. An analysis based on estimated weights is no longer 
optimal, and it is not clear whether such an analysis is superior to the FITCON procedure. The 
most critical issue seems to be the small d.f. for estimating the year variance component σu

2 , 
which will certainly make an adjustment necessary to the usual Wald tests based on WLSE 
with estimated weights (Kenward and Roger, 1997). 
 
Simulations and scrutiny of some data sets indicate that the results obtained by both of these 
methods differ only marginally. This observation can be explained by the fact that inter-year 
information is usually small, because the year variance component σu

2  tends to be relatively 
large. It is suggested that the FITCON procedure may be used in practice for its simplicity. It 
is stressed again, however, that this method also assumes CS. 
 
 
10. Conclusion 
 
• The COYD criterion of distinctness is based on a mixed model, which assumes that the 

compound symmetry (CS) assumption holds. This assumption may be violated in some 
cases. 

• If the CS assumption is tenable, it would seem best to use as much data as possible, i.e. 
long-term data, to estimate variance components, provided the CS assumption can be ex-
tended to long-term data. This ensures maximum attainable precision for the variance esti-
mates. Analysis may be done by FITCON. However, since it cannot be ruled out that long-
term time trends of variability (which are difficult to detect) and the effect of a changing 
composition of the set of varieties under test invalidate the CS assumption for long-term 
data, it seems safer to generally use only three-year data. Inspection of several traits in a 
Lolium data set indicates that three-year data tend to have a somewhat smaller residual 
mean square (MSint) and to better met the CS assumption required for FITCON analysis. 
When balanced two-year or three-year subsets can be formed with more than 20 residual 
d.f., such subsets may be used for computing LSDs. If balanced subsets have less than 20 
residual d.f., an unbalanced three-year data set can be analysed using FITCON. It should be 
borne in mind that all of these procedures are based on the assumption of CS. 

• The evidence of real data sets suggests that the CS assumption underlying standard mixed 
model analyses of variety x year data may at times be violated. Under marked departure 
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from CS, only the paired t-test can be recommended as a valid procedure. A problem with 
this approach is the extremely small number of d.f. (d.f. = J − 1, where J is the number of 
years in which both varieties were tested together). Three years of paired data appears to be 
the minimum requirement for this test. To compensate for the loss of power, one might 
consider reducing the significance level from 1% to 5%. No satisfactory alternative to the 
paired t-test can be suggested at this stage, and it is unclear whether a simple and powerful 
alternative under departure from CS is forthcoming. It is hoped, however, that the theoreti-
cal results presented in this document may help someway towards finding a viable proce-
dure. 
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Fig. 1: Plot of variance (ordinate) vs. mean (abscissa) for trait M11. Original data (x 10−3). 
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Fig. 2: Plot of variance vs. mean for trait M11. Log-transformed data (x 10−1). 
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Fig. 3: Plot of variance vs. mean for trait M51. Original data (x 10−3). 
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Fig. 4: Plot of variance vs. mean for trait M51. Log-transformed data (x 10−1). 
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Fig. 5: Plot of variance vs. mean for trait M31. Original data (x 10−3). 
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