

TWC/15/15 ORIGINAL: English DATE: May 13, 1997

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

Fifteenth Session Budapest, June 3 to 5, 1997

BALANCED α AND β RISKS TABLES (SINGLE SAMPLING)

Document prepared by experts from Spain

INTRODUCTION

TWC has got many of its conclusions in autogamous homogeneity item with tables TWC/11/16. This is a good document and represents one of the approaches to the problem. With parameters such as population standard p, and acceptance probability P, in tables one can get the k, maximum number of off-types tolerable in a sample of size n. Nevertheless, some problems arise when it is tried to extend those tables to every crop. Some of them may be the following:

1. These tables suppose that p, population standard is perfectly known. That may be the case of some important crops for which are legal requirements. But in case of not being fixed the population standard (case of many crops which are waiting for guidelines) it is necessary to assume it. The consequence of adopting a population standard without at least have done some estimation for it ,may lead to important errors.

2. With these tables we get

- (a) p errors small
- (b) 2p errors ,(consumer risk) very large
- (c) Acceptance probabilities are merely indicated (but taking 99 or 95% may increase the β risks. β 2P)

The reason for these large $\beta 2p$ is that only αp are considered to reach P Acceptance probability.

That $\beta 2p$ is the probability of accepting a sample in spite of being a sample with double percent of off-types than the population standard fixed).

As the case should be that for those new crops we do not know very well the population standard, the errors may be important

3. It doesn't seem anyway to be one of the objectives of UPOV to look for population standards for every crop. When doing so, it will be risky to write these population standards in future guidelines. It is good to remember that the method is what is forcing to choose those population standards, that in best of cases population standards got may be very different than those required by other authorities like certification ones.

One interesting task of TWC seems to be to look for applicable methods that permit to the techniques to work with a crop in DUS trials. But at fixing a parameter like p, population standard imposes a crop to be of a certain way and that doesn't seem to be the way

4. It is rather strange that we try autogamous species in other way than we have done with alogams .Why is that difference? Methods in alogams of course are more difficult but why not treating autogams with the same philosophy?. At first, homogeneity is a term for autogams not very usual in my country when we speak of off-types. We speak of uniformity. Homogeneity holds another things, like the continuous variation in the characters.

The main philosophy in alogams has been that a candidate variety has not to be very different than the established varieties. COYU has been an improvement for some "special" varieties that with old method might be not included in list now. Of course, the right technique of those varieties to be accepted was clear. Autogamous and pure lines should answer to hypothesis parallel than those thrown in autogams.

LOOKING FOR ESTIMATORS OF POPULATION STANDARD

What is sure is that we need a population standard but we may deduce it from countings in the reference collection. Estimation of p will be more precise as we have looked in many plants of a crop or a type within a crop. This philosophy has been followed in TWC/13/9 though this method is different. If we have seen in our reference collection that estimation of p is 1.5%, if we look in Tables TWC/11/16 we see that maximum number of off-types allowed in a sample of (three years) $35 \times 3 = 105$ with an acceptance probability of 99,95 is 7 with a error $\alpha p = 0,02$ and an error $\beta 2p = 98,6$ and a $\beta 5p = 46,57$ that seems a little large. Is not possible to reduce that error $\beta 5p$?. To try to reduce it is necessary to introduce concept of OC curves, related with sampling plans

OC (OPERATING CHARACTERISTIC) CURVES:

The OC function is the mathematical expression stating the probability of accepting a variety as a function of the fraction of off-types p (population standard) in a variety.

A good graphic representation of the OC curve can be obtained from as few as five points. We know that when $p=0,\beta=1$ and when $p=1,\beta=0$. If we have another values of b and p we should therefore plot the values of b for these five values of p to obtain an approximation to an OC curve.

That should be one way of describing a concrete sampling plan and should be its OC curve.

If we assume then that for example with p estimation =1.5% the following risks may be desired

P1=.015 α 1=.05 P2=.05 β 2=.01

we see in Table 1 that with p=1.5% some sampling plans that should be the best to reduce $\beta 2$

(110,4,5)(150,5,6)(225,8,9)(300,10,11)(450,14,15)

(110,4,5) means that with a sample of 110 we accept with 4 off-types and reject with 5.

(300,10,11) means that with a sample of 300 we accept 10 and reject 11 and so on

METHOD USED TO GET OC CURVES

Results are shown in Table 1

To get those tables we have to look with p estimated and n the first number k that has small α 1 and β 2 to fit A

 $\alpha 1$ is computed in figure with Poisson distribution, since the sample size is large, though small compared with lot size, and the fractions of off-types in which we are interested are small. When P1=.015 and n=300, nP=4.5, and Pr(k>11)=.0062. When P=.05, then nP=15 and Pr(k<=10)=.1186. So we have

A comparison for three sampling plans should be as follows:

	αl	$\beta 2$ $p^2 = 05$
ł	1015	p205
(225,8,9)	0,0079	0,21
(300,10,11)	0,0062	0,1186
(450, 14, 15)	0,0641	0,386

As sample size increases the maximum steepness of the OC curve becomes greater, mainly because $\beta 2$ becomes smaller. So we have assured for a good protection such as A, the better number of off-types with the minimum $\beta 2$, Table 1 shows different sampling plans where one can choose for different sample sizes and ps.

Anyway if we have another sample size one can build another sampling plan as (1500,35,36) or choose a sampling plan near them as can be (1498,34,35) or others.

With other population standards and with A we can get as we have done with Table 1 the Tables 38.4A that are a part of master tables used for normal inspection and are used in industry for single sampling.(Those are tables got from Military Standard 105A: Sampling Procedures and Tables for Inspection by Attributes)

TABLE	1
-------	---

OC C	CURVES								
	P1	1.5 %							
	(MINIMU								
	M)		_						
	αι		<=5						
	β2		<=40						
	P2		10%						
	(MAXIMU								
	M)								
	n	K	α1	β2					
				•					
	G 1 -	Maximum							
	Sample	INUMBER OF							
	5120	on-types							
	84	3	3,921	39,540					
	85	3	4,064	38,621					
	86	3	4,210	37,715					
	87	3	4,360	36,823					
	88	3	4,512	35,945					
	89	3	4,667	35,080					
	90	3	4,825	34,230					
	91	3	4,986	33,393					
	105	4	2,233	39,777					
	106	4	2,314	38,952					
	107	4	2,396	38,136					
	108	4	2,480	37,331					
	109	4	2,500	30,330 25 752					
			2,054						
	111	4	2.836	34.970					
	113	4	2,930	33,463					
	148	5	2,587	25,256					
	149	5	2,661	24,695					
	150	5	2,737	24,144					
	150	6	0.837	37.815					
	151	5	2,813	23,600					
	152	5	2,891	23,068					
	224	8	0,772	21,471					

225	7		10 777
			12,777
225	8	0,793	21,054
226 227	8	0.815	20.643
227	0 10	0,637	20,230
297	10	0,021	12,394
290	10	0,030	12,341
299	10 e	0,051	12,092
300	ð	4,020	3,743 6 095
300	9	1,709	0,985
300	10	0.667	11.846
301	10	0,003	11,005
302 449	10	0,099	11,300
440	14	0,399	4,029
449	14	0,407	3,944 0 593
450	11	4,200	0,583
450	12	2,098	1,1//
450	13	0,963	2,206
450	14	0,415	3,860
451 746	14	0.424	3.778
740	20	0,502	0,144
747	20 20	0,570	0,141
740	20	0,578	0,137
749	20 17	0,387	0,134
750	17	3,034 2 161	0,013
750	10	2,101	0,032
750	13	1,133	0,000
/50	20	0,393	0.131
750	20	0.495	0.746
1496	35	0,504	0,120
1490	35	0,500	0,000
1498	35	0,511	0,000
1500	31	3 427	0,000
1500	32	2,230	0,000
1500	33	1 414	0,000
1500	34	0.874	0.000
1500	35	0.527	0.000
1500	36	0.327	0.000

TABLE 38.4AMASTER TABLE FOR NORMAL INSPECTION (SINGLE SAMPLING)

SAMPLE	Acceptable Quality Levels (normal inspection)												
SIZE	0.015	0.035	0.065	0.10	0.013	0.25	0.40	0.65	1.0	1.5	2.5	4.0	6.5
	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE
2 3 5												0 1	0 1
7 10 15									0 1	0 1	0 1	13	$\begin{array}{ccc}1&2\\2&3\end{array}$
25 35 50						0 1	0 1	0 1	1 2	$\begin{array}{ccc}1&2\\2&3\end{array}$	$ \begin{array}{ccc} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{array} $	$ \begin{array}{ccc} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{array} $	3 4 5 6 6 7
75 110 150			0 1	0 1	0 1	12	$\begin{array}{ccc}1&2\\2&3\end{array}$	$\begin{array}{ccc}1&2\\2&3\\3&4\end{array}$	$\begin{array}{ccc} 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{array}$	3 4 4 5 5 6	4 5 6 7 8 9	67 89 1112	9 10 12 13 17 18
225 300 450	0 1	0 1	1 2	$\begin{array}{ccc}1&2\\2&3\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 3 4 4 5	3 4 4 5 5 6	4 5 5 6 7 8	5 6 7 8 10 11	8 9 10 11 14 15	11 12 14 15 20 21	 17 18 20 21 29 30 	24 25 32 33 43 44
750 1500	1 2	$\begin{array}{ccc}1&2\\2&3\end{array}$	2 3 3 4	3 4 5 6	4 5 7 8	6 7 9 10	8 9 13 14	11 12 18 19	15 16 15 26	20 21 35 36	31 32 56 57	45 46 81 82	68 69 124 126

= Use first sampling plan below arrow.

AC = Acceptance number.

RE = Rejection number

TABLE 38.4AMASTER TABLE FOR NORMAL INSPECTION (SINGLE SAMPLING)

SAMPLE	Acceptable Quality Levels (normal inspection)										
SIZE	10.0	15.0	25.0	40.0	65.0	100.0	150.0	250.0	400.0	650.0	1000.0
	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE	AC RE
2 3 5	0 1	1 2	1 2	$\begin{array}{ccc} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{array}$	2 3 3 4 5 6	3 4 5 6 8 0	5 6 8 9 12 13	8 9 12 13 10 20	12 13 18 19 20 30	19 20 28 29	18 29 41 42 65 66
7 10 15	$\begin{array}{ccc}1&2\\2&3\\3&4\end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 3 4 5 6 7 8	5 6 7 8 10 11	7 8 10 11 15 16	8 9 11 12 15 16 22 23	12 13 17 18 23 24 33 34	19 20 26 27 36 37 51 52	29 30 39 40 54 55 78 79	60 61 83 84 121 122	89 90 123 124 178 179
25 35 50 75 110 150	5 6 7 8 9 10 13 14 18 19 24 25	$\begin{array}{cccc} 7 & 8 \\ 10 & 11 \\ 13 & 14 \\ 19 & 20 \\ 26 & 27 \\ 34 & 35 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	24 25 33 34 46 47 66 67 93 94 123 124	35 36 48 49 67 68 96 97 135 136	51 52 69 70 96 97 138 139	80 81 110 111 151 152	124 125 168 169	192 193	
225 300 450 750 1500	34 35 44 45 62 63 98 99 184 185	48 49 63 64 89 90	76 77 98 99	115 116		-					

= Use first sampling plan below arrow.

AC = Acceptance number.

RE = Rejection number

[End of document]