

TWC/29/26 Add. ORIGINAL: English DATE: July 12, 2011 F

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

Twenty-Ninth Session Geneva, June 7 to 10, 2011

ADDENDUM

CYCLIC PLANTING OF ESTABLISHED VARIETIES TO REDUCE TRIAL SIZE; PROPOSAL FOR TEXT TO BE ADDED TO TGP/8

Document prepared by experts from the United Kingdom

The Annex to this document contains a presentation on Cyclic Planting given by Mrs. Sally Watson, United Kingdom, at the twenty-ninth session of the Technical Working Party on Automation and Computer Programs.

[Annex follows]

TWC/29/26 Add.

ANNEX

Cyclic Planting of Established Varieties to Reduce Trial Size

(text proposal for TGP/8)

- Method of Cyclic Planting of Established Varieties to reduce DUS trial sizes while maintaining testing stringency.
- A subset of the established varieties is omitted from the trial each year and their absence is compensate for in the DUS testing of candidate varieties using historical data
- Is described in TWC/17/11. Is routinely used in the UK DUS testing of herbage and oilseed rape
- Guidance on the method is proposed for TGP/8 PART II (Selected techniques used in DUS examination)

Method

- Allocate established varieties to one of three cycles and omit one cycle in turn each year
- Include candidate varieties for (3yr) test period + 4th year
- If DUS, candidate joins the established varieties in trial, is allocated to a cycle and is omitted from trial every third year
- Distinctness by adapted COYD on incomplete table of variety characteristic means. Missing data is compensated for using two years' data from before the test period
- (Uniformity by COYU on the incomplete table of variety characteristic standard deviations in the 3 yr test period)
- First must use historical data to compare effects of cyclic planting vs existing system on the DUS decisions

					TEST PERIOD				
TRIAL YEARS	2010	2011	2012	2013	2014	2015	2016	2017	2018
Candidate Varieties					X	Х	Х	*	
Established Varieties									
Cycle 1		Х	Х		X	Х		*	*
Cycle 2	0		Х	Х		Х	Х		*
Cycle 3	0	Х		Х	X		Х	*	
New Established Varieties – Assim	lation i	nto mati	rix						
Final DUS tested in 2012 (Cycle 2)	0	0	\mathbf{X}^{F}	Х		Х	Х		*
Final DUS tested in 2013 (Cycle 3)		0	Х	X^F	X		Х	*	
Final DUS tested in 2014 (Cycle 1)			Х	Х	X ^F	Х		*	*
Final DUS tested in 2015 (Cycle 2)				0	X	\mathbf{X}^{F}	Х		*
X Indicates data retrieved using n period for uniformity testing	aximum	of 4 yea	ars for di	stinctnes	s testing	and with	hin the (b	boxed) te	st
O Indicates data present but not re	trieved								
F Indicates final DUS test year of	new est	ablished	varieties						
* Indicates future inclusion in tria	ıl								
(within box) Indicates the data	used for	uniform	ity testin	g					

Remarks

• Allocation

- initial allocation to cycles (minimise bias risks),
- will lose balance over time as candidates become established and established varieties withdrawn
- don't need perfect balance to transfer between cycles plant in years when due to be omitted
- Use of back data
 - Don't use more than 2 years of back data this maintains stringency
 - If all data present in test period, don't use back data

Analysis for distinctness

By adapted COYD (MJRA of incomplete table of established varieties×6 yrs + complete table of candidate varieties×3 yrs)

years is:

 $c_{ij} = \mu + y_j + \beta_j v_i + \varepsilon_{ij}$ where c_{ii} is the value on a characteristic for variety *i* in year *j*, *i* = $1, ..., n_v \text{ and } j = 1, ..., n_v$ μ is the overall mean v_i is the effect of the *i*th variety with $\Sigma v_i = 0$ y_i is the effect of the j^{th} year with $\sum y_i = 0$ β_i is the sensitivity of year j ε_{ii} is a random error associated with variety *i* in year *j* Adaptation of Digby, P (1979) model. Is fitted iteratively to get estimates of variety means and LSD's to determine distinctness. df = $(n - 1 - 2(n_y - 1) - (n_y - 1))$, must be ≥ 20

Variety A represents c represent the three cyc	andidat les of e	e varie stablisl	ties and ned var	d varie rieties.	ties B, The t	C and D est period
18 years 4 to 6.						
			Year			
Variety	1	2	3	4	5	6
А	-	-	-	6	2	3
В	-	6	4	_	6	7
С	7	10	-	8	11	-
D	11	-	14	10	-	17
Domentar estimates of		. (962 (

			Y	ear			
Variety	1	2	3	4	5	6	Means
A	_	_	_	6	2	3	2.78 = 7.86 + -5.09
В	-	6	4	_	6	7	5.76
С	7	10	-	8	11	-	9.24
D	11	-	14	10	-	17	13.67
Means	5.74	8.42	6.66	7.75	5 8.92	9.0	3
Sensitivities	0.91	1.14	1.26	0.36	5 1.37	1.3	9
1% LSD valu	ues (1d	f – vy :	small e	examp	le data	aset!	Recommend ≥ 20)
Variety		А	В	С			
	В	15.75					
	С	18.00	15.64				
	D	18 30	15.64	18.83			

