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INTRODUCTION 
 
1. In cases where the duration of the DUS test is two independent growing cycles, results 
are reviewed after the first cycle of testing, in order to exclude varieties of common 
knowledge which are clearly distinct from the candidates (see document TGP/9 “Examining 
Distinctness”).  When COYD is used to assess distinctness in a characteristic, no formal 
mechanism has yet been described to inform such early decisions on distinctness. 
 
2. In document TWC/25/14, a possible approach was described for measured 
characteristics.  However this approach makes some strong assumptions regarding the 
properties of the data. This document reiterates the description of the approach, explores the 
effect of deviations from these assumptions and suggests possible solutions that may be 
employed if necessary. 
 
 
Overview 
 
3. The aim of this approach is to identify after the first cycle of testing which varieties of 
common knowledge are so different from the candidate that they do not need to be compared 
in the second cycle. To enable this, we estimate the probability that a candidate would be 
distinct on the 2-cycle COYD criterion from a particular variety of common knowledge, given 
the results from the first cycle of testing.  If the probability is suitably large, the candidate is 
declared distinct from that variety and does not need to be compared in the second growing 
cycle. The method is applied characteristic by characteristic.  In order to judge the variability 
associated with measurements in a particular characteristic we need to have past data.  The 
approach might be used in combination with processes such as GAIA. 
 
 
Mathematical details 
 
4. We make a number of assumptions about the data in order to set up the method in a 
relatively straightforward way.  The data that we are considering are the variety means in each 
year (or growing cycle).  We assume that these are independent and normally distributed, and 
that their variances are the same in each cycle and for each variety and equal to σ2.  We 
assume that the historical data is large (so many degrees of freedom) and so would be the 
(potential) two-cycle data set used for COYD.   
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5. Two varieties, A and B, are tested in two growing cycles, labelled 1 and 2.  Mean 
measurements, xij, are made in the character of interest for each variety, i, and growing cycle, 
j.  Let the difference dj in cycle j, be given by: 
 

BjAjj xxd −=  
 

based on the assumptions that dj is i.i.d for different cycles, being normally distributed with 
mean θ and variance 2σ2.  

 

6. Also let the COYD difference after two cycles, D, be given by 
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freedom and s12 is the square root of the residual variance for the two cycle COYD analysis of 
variance (with growing cycle and variety effects removed). 

   
7. We wish to estimate the probability pD that A and B will be considered distinct after two 
cycles of tests, given the first cycle result, d1, and the historical data,  X, i.e. 
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8. Using equation (1), we can then develop tables for threshold values of d1, given various 
values of pD. 

 

9. Conditional on d1 and σ (for now) being known, the prediction distribution of d2 is 
normal with mean d1 and variance 2σ2.  For proof, consider the distribution of d1-d2 [see 
http://en.wikipedia.org/wiki/Prediction_interval, also c.f. Bayesian predictive theory for a 
normal model with known variance and a flat prior]. 

 

10. Thus  
2
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+
=  has a normal distribution with mean mean d1 and variance σ2.  Also 
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11. If ν12 is very large then  
12s
D  is approximately normal with mean σ

1d  and variance 1.  It is 
then straightforward to calculate tables. Since the lower probability is very small, the 
threshold for d1 is given by ))()1(( 1

2
1

D
p p−− Φ+−Φσ . 



TWC/28/30 
page 4 

 
 
 
Considerations 
 
12. A choice of level of pD needs to be made.  If a value of 0.5 (50%) is used, then the 
resulting threshold will result in even odds of making an incorrect early decision.  Instead a 
larger value of pD is required, such as 90%. 
 
13. The long-term COYD LSD (based on a 2-cycle test) is the same as the threshold 
produced when pD is 50%. 
 
14. A number of assumptions have been made: 
 

a) Both the historical data set and two-cycle data sets are sufficiently large.  This 
seems a reasonable restriction on the use of the approach given its main 
application is to help manage large reference collections. 

 
b) That the errors associated with variety by cycle means are normally distributed. 
 
c) That the variance for variety by cycle is constant and not dependent on cycle on 

variety. 
 
15. We demonstrate below how to assess the extent to which the data for a characteristic 
deviate from assumptions (b) and (c) using a real data example.  We examine how robust the 
approach is to different levels of deviation and consider solutions for cases where validity of 
the approach would be affected.  In particular for assumption (b), we look at skewness and 
levels of kurtosis. 
 
16. Skewness is the degree of asymmetry of a distribution (in this case of the errors 
associated with variety by cycle means) –see http://en.wikipedia.org/wiki/Skewness for more 
details.  An index can be calculated to measure the skewness of a sample from a distribution. 
This is zero for a symmetric distribution, such as the normal, and other values indicate a 
positive or negative skew to the distribution.  
 
17. Kurtosis is the degree which the distribution is peaked or flat compared to the normal - 
http://en.wikipedia.org/wiki/Kurtosis.  Again an index can be calculated for samples, so that a 
normal distribution gives a value of (about) zero.  Positive values indicate a distribution with 
a sharper peak and longer, fatter tails, whilst negative values indicate a more rounded peak 
and shorter thinner tails. 
 
 
An example application 
 
18. To demonstrate the approach, we refer to a 10 cycle dataset for field pea from UK field 
trials from 1995 to 2004 (using the semi-leafless group).  COYD is used with a probability 
level of 2%.   
 
19. We show the thresholds for a particular characteristic, stipule length.  The long-term 2% 
LSD for a 2-cycle test based on the 10 cycles of historical data is 10.64 mm (note that the data 
ranges from 45.0 mm to 121.5 mm).  For comparison, the long-term 2% LSD for a single 



TWC/28/30 
page 5 

 
cycle test is 15.04 mm.  The table below gives the required thresholds for the first cycle 
difference d1  to obtain a pD probability of being distinct after the second cycle of tests.   
 

pD d1 threshold 
99.9% ±24.77 
99% ±21.27 
98% ±20.03 
95% ±18.16 
90% ±16.50 
80% ±14.48 
50% ±10.64 

 
 
20.  The sample skewness and kurtosis indices are given in the table below with their 
standard errors for the range of quantitative characteristics measured.  Note that 
characteristic 46 is currently visually assessed and distinctness decisions are made on the 
basis of a two-state difference rather than COYD.  However, we include it for comparison.  
By comparison with the standard errors, we can see that characteristic 71 is both skew and has 
positive kurtosis (possibly because it is skew).  This is perhaps not surprising since it is a 
count.  Characteristic 46 also has positive kurtosis.  Other characteristics have lesser degrees 
of skewness and kurtosis.  The question naturally arises: how robust is the proposed approach 
to different levels of skewness and kurtosis? 
 
Characteristic Skewness SE Kurtosis SE 
01 Plant height at flowering -0.18 0.056   1.7 0.11 
03 Petiole length  -0.05 0.056   0.7 0.11 
07 Peduncle length -0.08 0.056   0.7 0.11 
10 Days to first flowering -0.31 0.056   2.7 0.11 
12 Days to 80% flowering  0.14 0.056   2.5 0.11 
25 Standard width -0.07 0.056   0.9 0.11 
41 Stipule length -0.09 0.056   0.7 0.11 
44 Stipule width  0.01 0.056   0.9 0.11 
46 Intensity of foliage colour  0.64 0.069   6.3 0.14 
71 Number of nodes up to the first fertile node -1.29 0.056 10.7 0.11 
74 Pod length -0.06 0.056   1.2 0.11 
75 Pod width  0.01 0.056   1.2 0.11 
76 Ovule number  0.06 0.056   1.7 0.11 
80 100 seed weight  0.21 0.058   1.6 0.12 
 
21.  We can study whether the assumption that the variance for variety-by-cycle is constant 
using mixed models (we use the GenStat REML procedure).  Different variance structures can 
be fitted to the random cycle-by-variety term (for more information see the GenStat Statistics 
Guide).  The structure of the interaction term is defined using a direct product formulation, for 
example diag(cycle) ⊗ id(variety).  Here, diag refers to a diagonal matrix structure (so in this 
case, one variance parameter for each cycle) and id refers to an identity matrix structure (so 
just one variance parameter over all varieties).  These more complex models can be compared 
to the simplest model (id(cycle) ⊗ id(variety) –  just one variance parameter) using deviances.  
 
22. Here we examine characteristic 41 and fit mixed models to a reduced data set consisting 
of only those varieties with four or more cycles of data.  This gave a data set of 228 varieties 
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with 1320 rows of data.  We fitted four different models, all with variety as a fixed effect and 
cycle as a random effect, and obtained the following deviances: 
 

Model Deviance Degrees of freedom 
id(cycle) ⊗ id(variety)  
 

4779.07 1090 

diag(cycle) ⊗ id(variety)  
 

4712.93 1081 

id(cycle) ⊗ diag(variety) 
 

4477.50  863 

diag(cycle) ⊗ diag(variety) 4430.61  854 
 
23. The inclusion of one variance parameter for each variety (id(cycle) ⊗ diag(variety)) was 
not a statistically significant improvement to the model as judged by the reduction in deviance 
compared to the simplest model (id(cycle) ⊗ id(variety)).  In contrast the inclusion of one 
variance parameter for each cycle (diag(cycle) ⊗ id(variety)) resulted in a highly statistically 
significant (P<0.001) reduction in the deviance compared to the simplest model.  While the 
(diag(cycle) ⊗ diag(variety)) model gave a statistically significant reduction in deviance 
compared to the (diag(cycle) ⊗ id(variety)) model, it was evident from comparing the change 
in deviance to the change in degrees of freedom that statistical significance was due to the 
extent of data rather than the magnitude of the improvement in fit.  Thus only the inclusion of 
one variance parameter for each cycle would appear to be justified in the case examined. 
 
24. The residual variances are shown below.  The residual variance associated with seven 
out of the ten cycles was less than the residual variance from the id(cycle) ⊗ id(variety) 
model.  
 
 

Residual variance model Estimate SE 
id(cycle) ⊗ id(variety) 19.36 0.83 
   
diag(cycle) ⊗ id(variety) -  cycle 1 15.61 3.10 
diag(cycle) ⊗ id(variety) -  cycle 2 18.50 3.20 
diag(cycle) ⊗ id(variety) -  cycle 3 11.76 1.96 
diag(cycle) ⊗ id(variety) -  cycle 4 20.56 2.89 
diag(cycle) ⊗ id(variety) -  cycle 5 18.99 2.59 
diag(cycle) ⊗ id(variety) -  cycle 6 17.24 2.28 
diag(cycle) ⊗ id(variety) -  cycle 7   8.44 1.42 
diag(cycle) ⊗ id(variety) -  cycle 8 18.48 2.55 
diag(cycle) ⊗ id(variety) -  cycle 9 40.13 5.40 
diag(cycle) ⊗ id(variety) -  cycle 10 26.43 3.78 
   

 
Based on the above parameter estimates SEDs for COYD variety comparisons in each 
pairwise (=45) combination of the ten cycles were computed and are shown in Figure 1.  The 
two-cycle COYD SED based on the id(cycle) ⊗ id(variety) residual variance model was 4.40. 
60% of the pairwise SEDs were less than this, which is to be expected given the ten cycle 
estimates shown above were skew distributed. 
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25. For other characteristics in our data set sizeable cycle effects on the variance were 
found.  In contrast, variety effects on the variance were much smaller.  
  
Figure 1: 

 
 
 
Assessment of the robustness of the proposed approach to skewness and kurtosis  
 
26. Here we examine how robust the proposed one-cycle approach is to skewness and 
kurtosis.  We have not yet looked at non-uniform variance – this may be the subject of future 
work. 
 
 
27. We examine the effect of kurtosis by simulating data with errors from Student’s t-
distribution.  The student t-distribution is symmetric with the degree of kurtosis depending on 
the degrees of freedom – see the table below.  
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Degrees of freedom Kurtosis 
5 6.00 
6 3.00 
7 2.00 
8 1.50 
9 1.20 
10 1.00 
11 0.86 
12 0.75 
13 0.67 
14 0.60 
15 0.55 
16 0.50 
17 0.46 
18 0.43 
19 0.40 
20 0.38 

 
28. We have run simulations using errors with student t-distributions with degrees of 
freedom from 1 to 20, as well as the normal distribution.  We investigate what decisions are 
made after one-cycle (using the new approach) and two cycles (using COYD at 2%), 
assuming the true difference between the two varieties is 0, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5 
times the COYD criterion.  We have also looked at pD values of 50%, 80%, 90%, 95%, 99% 
and 99.9% - but here we will show results for 90% only.  For each case we ran 100,000 
simulations. 
 
29. Figure 2 shows how the proportion of pairs that exceed the COYD criterion after two 
cycles depends on the true difference, shown as a multiple of the COYD criterion (x-axis) and 
the degrees of freedom (panels).  The degrees of freedom has an influence on results: where 
the true difference is zero, the lower the degrees of freedom is, the further the proportion of 
distinctness decisions increases above the target 2% level (see also Figure 4).  Also fewer 
distinctness decisions are made when the true difference is above the COYD criterion as the 
degrees of freedom decrease (see also Figure 5). 
 
30. Figure 3 shows how the proportion of pairs that exceed the one-cycle threshold depends 
on the true difference, shown as a multiple of the COYD criterion (x-axis) and the degrees of 
freedom (panels).  The proportion of pairs exceeding the one-cycle threshold is greatest for 1 
degree of freedom when the true differences are low and smallest for 1 degree of freedom 
when the true differences are high.  Again, where the true difference is zero, the lower the 
degrees of freedom is, the further the proportion of distinctness decisions increases above the 
target 2% level (see also Figure 4).  Also, fewer distinctness decisions are made when the true 
difference is above the COYD criterion as the degrees of freedom reduce (see also Figure 5). 
 
31. Figures 4 and 5 show how the proportions of COYD and one-cycle distinctness 
decisions compare, given true differences of zero (Fig. 4) and three times the mean COYD 
criterion (Fig. 5).  Whilst the proportions are fairly similar for a zero true difference (the one-
cycle is slightly higher), for three times the COYD criterion the one-cycle method is less 
effective than COYD.  This is perhaps the best construction; we are willing to identify fewer 
varieties as distinct on the basis of one cycle.  The graphs also show that the effect of kurtosis 
can be severe.  
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32. From these results it seems that it would be best to use the method only where the level 
of kurtosis is quite low.  Of greatest concern is the rate of false positives, i.e. declaring 
varieties as different when in fact the true difference between their characteristic scores is 
zero.  With a pD tolerance level of 90%, then t-distributed data with 6 degrees of freedom 
gives a false positive rate of 4.4%.  In comparison, normally distributed data has a rate of 
1.1%.  This could be considered acceptable.  All of the characteristics in the example have 
kurtosis levels equivalent to 6 degrees of freedom or more except for intensity of foliage 
colour and the number of nodes.  Later in this document we consider what should be done 
about such characteristics. 
 
 
Figure 2: Kurtosis simulations   
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Figure 3: Kurtosis simulations 
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Figure 4: Kurtosis simulations 
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Figure 5: Kurtosis simulations 

 
 
33. We examine the effect of skewness by simulating data with errors from a skew-normal 
distribution.  This distribution can be denoted by SN (ξ, ω2, α) where ξ ω and α are the 
location, scale and shape parameters respectively.  For further details see:  
http://en.wikipedia.org/wiki/Skew_normal_distribution and 
http://azzalini.stat.unipd.it/SN/Intro/intro.html . 
While data can be simulated from the skew normal distribution with varying degrees of 
skewness in the range [0,1), both skewness and kurtosis are functions of only the skewness 
parameter α.  Consequently, specifying a value for the parameter α to give a pre-selected 
population skewness will also fix the population kurtosis.  The kurtosis is only zero when the 
skewness is also zero.  Therefore it has been impossible to isolate out through simulation the 
effect of skewness from that of kurtosis.  However, given that kurtosis is usually present in 
skew-distributed data, this should not prove to be a substantial limitation. 
 
34. We have run simulations using errors from skew-normal distributions SN (ξ, ω2, α) where 
the location, scale and shape parameters ξ, ω and α respectively took the values shown in the 
table below.  The table shows the theoretical mean, variance, skewness and kurtosis for each 
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distribution from which errors were simulated.  Thus errors were simulated from distributions 
with the same mean and variance as the standard normal distribution but with skewness 
varying from 0 (standard normal) to 0.9.  We investigate what decisions are made after one-
cycle (using the new approach) and two cycles (using COYD at 2%), assuming the true 
difference between the two varieties is 0, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5 times the COYD 
criterion.  We have looked at a pD value of 90%.  For each case we ran 30,000 simulations.  
(It should be noted that changing the sign of the shape parameter α merely changes the sign of 
the skewness.) 
 
 

    ξ       ω    α Mean Variance Skewness Kurtosis 
0.0000 1.0000 0.0000 0.00 1.00 0.0 0.000 
0.6153 1.1742 0.8711 0.00 1.00 0.1 0.041 
0.7753 1.2653 1.1988 0.00 1.00 0.2 0.102 
0.8875 1.3370 1.4992 0.00 1.00 0.3 0.176 
0.9768 1.3979 1.8141 0.00 1.00 0.4 0.258 
1.0522 1.4516 2.1738 0.00 1.00 0.5 0.347 
1.1181 1.5001 2.6187 0.00 1.00 0.6 0.443 
1.1771 1.5445 3.2260 0.00 1.00 0.7 0.544 
1.2307 1.5857 4.1902 0.00 1.00 0.8 0.650 
1.2799 1.6243 6.2979 0.00 1.00 0.9 0.760 
       

 
35. Figure 6 shows how the proportion of pairs that exceed the COYD criterion after two 
cycles depends on the true difference, shown as a multiple of the COYD criterion (x-axis) and 
the skewness (panels).  It is evident that changes in the coefficient of skewness within the 
range [0,0.9] have very little impact on the proportion of pairs exceeding the COYD criterion 
after two cycles and this pattern holds for true differences over a range of multiples of the 
COYD criterion.  
 
36. Figure 7 shows how the proportion of pairs that exceed the one-cycle threshold depends 
on the true difference, shown as a multiple of the COYD criterion (x-axis) and the skewness 
(panels).  It is evident that changes in the coefficient of skewness within the range [0, 0.9] 
have little impact on the proportion of pairs exceeding the one-cycle threshold and this pattern 
holds over a range of multiples of the COYD criterion. 
 
37. Figures 8 & 9 show how the proportions of COYD and one-cycle distinctness decisions 
compare, given true differences of zero and three times the COYD criterion respectively.  As 
to be expected when the true difference is zero (Fig. 8), the proportion found distinct is lower 
under the one-cycle method than COYD.  However, the proportion found distinct under the 
one-cycle method when the true difference is zero does appear to increase with increasing 
skewness.  The extent of variation in the underlying trend in the one-cycle method proportion 
as skewness increases appears at first sight to be more serious than it actually is.  In fact, in 
part it is an artefact of the choice of scale on the Y-axis.  Nevertheless, the variation in this 
trend could be reduced by increasing the number of simulations but there would be limited 
benefit in doing so as the trend is already clear and increasing the number of simulations for 
the skew-normal distribution would be very computer-intensive.  In Figure 9, in which the 
true difference equals three times the COYD criterion, the proportion found distinct is lower 
under the one-cycle method than COYD.  The proportion found distinct increases slightly 
under the one-cycle method as skewness increases but in all cases already exceeds 0.99.  The 
graphs show that the effect of skewness is minimal up to the level that we have simulated. 
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38. From these results it seems that changes in skewness within the range [-0.9, 0.9] have a 
minimal impact on decision making.  With the exception of characteristic 71 all 
characteristics had observed skewness within this range in our example data set.  Larger levels 
of skewness may be encountered in practice and might require some action. 
 
 
Figure 6: Skewness simulations 

 
 



TWC/28/30 
page 15 

 
Figure 7: Skewness simulations 
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Figure 8: Skewness simulations 
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Figure 9: Skewness simulations 

 
 
Dealing with excessive deviation from the assumptions 
 
39. Here we consider possible ways of dealing with characteristics that have important 
degrees of skewness or kurtosis, or where the assumption about uniform variance is not true. 
Of course, where no solution proves successful then it may be best to ignore the characteristic 
for the purpose of first-cycle comparisons. 
 
40. The second-largest absolute level of skewness and the largest positive skewness 
observed in our data set was for characteristic 46.  However, it should be remembered that 
this characteristic is currently visually assessed and distinctness decisions are based on a two-
state difference rather than by COYD.  In statistics, natural logarithm transformations are 
commonly applied to positively skewed data and therefore the skewness and kurtosis were 
assessed after log transformation of this characteristic.  The skewness was reduced by 
approximately a third but kurtosis by only approximately a fifth. 
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Characteristic Scale Skewness S.E.  Kurtosis S.E. 
46 Original  0.64 0.07   6.26 0.14 
46 ln(x)  0.41 0.07   5.19 0.14 
      
71 Original -1.29 0.06 10.69 0.11 
71 ln(max[x]+1-x) -0.02 0.06 10.01 0.11 

 
41. In contrast, characteristic 71 exhibited negative skewness.  Therefore, in this case, the 
slightly more complex transformation of ln ( max(x) + 1 – x) was evaluated where x denotes 
responses for characteristic 71.  This handles the fact that skewness is negative rather than 
positive and avoids attempting to log-transform a non-positive number.  The transformation 
was very successful in reducing skewness to a negligible level for this characteristic but had 
minimal impact on kurtosis.  
 
42. As in our example, kurtosis may accompany skewness and it is possible that there may 
be a transformation not yet identified which may help to reduce both skewness and kurtosis.  
 
43. One potential approach to dealing with kurtosis in the absence of a suitable 
transformation is to extend the proposed methodology to deal with data that has t-distributed 
errors.  We may consider the formulation for this in the future.  
 
44. The variance was found not to be constant between cycles in many characteristics in our 
example.  At this stage, we have not completed our studies as to how problematic this might 
be.  If this heterogeneity is an issue and transformation does not provide a cure, it may be 
possible to extend the methodology to allow for this extra variation.  This is something that 
we intend to investigate in the future. 
 
 
Conclusions & future work  
 
45. A method has been introduced that allows the prediction of COYD decisions based on 
only one cycle of results where both historic and current data sets are large.  The approach 
presented here is preferable to applying a 1-cycle long-term LSD. 
 
46. A number of assumptions are made; we have investigated the consequences of 
departures from these.  Only serious degrees of skewness or kurtosis are likely to be an issue, 
and it should be possible to deal with characteristics with such problems by a suitable 
transformation or simply by not using those characteristics for first cycle decisions.  In our 
example, variance heterogeneity was a more common issue.  More work is required to 
investigate the importance of variance heterogeneity and possible modification of the method 
to allow for it. 
 
 

 
 [End of document] 


