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Abstract

To assess uniformity for quantitative characteristics in trials for distinctness, uniformity and
stability (DUS), the International Union for the Protection of New Varieties of Plants (UPOV)
has identified a method called Combined-Over-Years-Uniformity (COYU).  To account for a
dependency between standard deviation and mean, a moving average procedure is used.
Standard deviations are transformed and adjusted by the moving averages and new varieties
are compared to the mean transformed standard deviations of reference varieties by a one-
tailed t-test.

We examine the current moving-average procedure and the test against the mean of
transformed standard deviations and compare it to an alternative method, using analysis of
covariance and the estimation of quantiles.  This is exemplified with a real data set from
rapeseed uniformity trials in Germany.

Uniformity – DUS – COYU – moving average – LOESS - national list – standard
deviation – analysis of covariance - quantiles - quantitative characteristic

1.  Introduction

For the granting of a plant breeder’s right, uniformity is one of three important criteria to be
met by new varieties.  To assess uniformity for quantitative characteristics, the International
Union for the Protection of New Varieties of Plants (UPOV) has proposed a method called
Combined-Over-Years-Uniformity (COYU) (UPOV 2004).  This method assesses uniformity
based on within-plot standard deviations (SD) per variety and year using a sample of plants
per plot.  The SDs are subjected to analysis of variance (ANOVA) with factors year and
variety nested in year.  Candidate varieties are compared to the mean of a reference set by a
one-sided t-test.  The uniformity requirement is met when the one-sided t-test does not reject
the null hypothesis of uniformity.  To better meet the usual assumptions, SDs are
log-transformed.  In addition it has been found that SDs are often related to the mean, even
after log-transformation.  To remove this dependency, data are adjusted based on a moving
average procedure employing reference varieties.
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The purpose of the present paper is to examine the moving-average procedure and to compare
it to alternative procedures accounting for an SD-mean relationship.  Specifically, we will
explore analysis of covariance (ANCOVA) techniques, which allow the use of all reference
varieties for adjustment.  Finally, we investigate whether testing against the mean of reference
varieties is appropriate.  We will exemplify this with real data from rapeseed uniformity trials
in Germany.

2.  Materials and Methods

2.1 Combined Over Years Uniformity according to UPOV (2004)

First the within plot standard deviations for each variety in each year are calculated by
averaging the between-plant standard deviations on a plot-basis (SDk) over replications:
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where zhk is the observation on the hth plant in the kth plot, kz
�

 is the mean of the observations
from the kth plot, n is the number of plants measured in each plot and r is the number of
replicates (plots per variety).  The mean standard deviations SD are then log-transformed by
log(SD+1).

To account for a relation between standard deviation and mean, the COYU procedure adjusts
log-transformed SD-values for trends as determined from the reference varieties.  The
adjusted values are then submitted to an ANOVA with factors year and variety nested in year.
The adjustment is performed separately for each year and works as follows:

1.  Rank the log SDs of reference varieties according to the values of the mean (M), with

��
� zM .

2.  For each log SD of a reference variety, compute a nine-point moving average from the
ordered log SDs of all reference varieties and denote this as trend value (T).  For values
ranked 1st and 2nd the trend value is taken to be the mean of the first three values.  If the value
is ranked 3rd, the mean of the first five values is taken and for a value ranked 4th the mean of
the first seven values is used.
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3.  To calculate the trend value for a candidate variety find the two reference varieties with the
next smallest and next largest mean.  The trend value for the candidate (TCandidate) is computed
by linear interpolation between the two reference varieties as
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where Mleft and Mright are the mean values of the reference variety with next smallest and next
largest mean, respectively, Tleft and Tright are the corresponding trend values, and MCandidate is
the mean value of the candidate.

4.  To adjust the transformed SDs for candidate and reference varieties, the estimated trend
value (TCandidate or T) is subtracted and the grand year mean of reference varieties is added
back.  The objective of the adjustment is to obtain SD values, which would have been
observed if all varieties had the same mean.

5.  The variance (V) of adjusted SDs of reference varieties is computed as the residual mean
square of a one-way ANOVA with years as classification factor, using the model

yij = � + uj + eij (4)

where
yij = SD-value (log-transformed) of i-th variety in j-th year
� = constant (grand mean of reference varieties)
uj = effect of j-th year
eij = residual corresponding to a single variety in a single year

6.  The maximum allowable mean adjusted SD of a candidate variety is computed as

�
�

�
�
�

�
���

�� Rkk
VtyUC 11

��   , (5)

where 
��

y  is the mean of adjusted log SDs for the reference varieties, t� is the one-tailed t-

value for significance probability � with degrees of freedom as for V, k is the number of years
and R is the number of reference varieties.  The COYU procedure recommends � = 0.002
(UPOV, 2004).
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2.2 An alternative method

Instead of the moving average procedure we suggest to perform the adjustment for the SD-
mean dependence by analysis of covariance (ANCOVA).  Inspection of the rapeseed data
(Fig. 1) confirms that trends sometimes differ slightly among years.  Thus, the model should
allow for year-specific trends.  The suggested model

yij = �i + uj + fj(Mij) + eij  , (6)

where

yij = SD-value (possibly transformed) of i-th variety in j-th year
�i = effect of i-th variety (reference or candidate)
uj = effect of j-th year
fj(.) = smooth function for the j-th year (e.g., a quadratic polynomial)
eij = residual corresponding to yij

Mij = mean corresponding to yij

An adjusted mean can be defined as the mean of

�ij = �i + uj + fj( jM
�

) (7)

over years, were jM
�  is the year mean of means Mij.

Different functions may be fitted for fj(M), e.g., a quadratic polynomial:

2)( MMMf jjj �� ��   .

The model assumes a different regression on the mean for each year.  An F-test may reveal
whether there is significant heterogeneity among years.  When there are no significant
differences, one may fit a common regression model, e.g.,

2)( MMMf j �� ��   .

If the quadratic term is not significant, a linear trend can be fitted.

For candidate varieties we computed least square means (
�i� ) following (7) and confidence

intervals.  For approximation of denominator degrees of freedom the Kenward-Roger method
was used (KENWARD & ROGER 1997).  Candidate variety means can be compared to a
specific location parameter of the distribution of reference varieties (e.g. the mean, the median



TWC/23/13
page 6

or a quantile).  We calculated a confidence interval for the 95-quantile of reference variety
means by using the algorithm of HAHN & MEEKER (1991) which is implemented in the
UNIVARIATE procedure of the SAS system.  A two-sided 100(1-�)% confidence interval
for Qp, the 100pth quantile of a normal distribution, based on a random normal sample xi (i =
1, …, n) is

� � � �sgxsgxQQ npnpucllcl ),1;2/(),1;2/1( ',',
���

���
��

for 0.00 < p < 0.50 and

� � � �sgxsgxQQ npnpucllcl ),1;2/1(),1;2/( ',',
���

���
��

for 0.50 � p < 1.00

where x  and s are the sample mean and standard deviation of xi, n is the sample size, and the
factors � �npg ,;��  are given in Table 1 of  ODEH & OWEN (1980) or Table A.12 in HAHN &

MEEKER (1991).  The method is based on the noncentral t-distribution as given by ODEH &
OWEN (1980).  Here, we use the least square means (

�i� ) in place of xi.  The confidence
interval for the quantile is approximate in that least square means may show some correlation.

2.3 Take reference varieties as random

Instead of treating all varietal effects as fixed we can regard candidate varieties as fixed and
reference varieties as a random sample of a hypothetical population of reference varieties.
This is useful for studying the distribution of reference varieties.  The model may be extended
as follows:

ykmj = �k + xkakm + uj + fj(Mkmj) + ekmj

where
ykmj = SD-value (possibly transformed) of m-th genotype effect in k-th set of varieties

in j-th year; each candidate forms a separate set, while all reference varieties are
pooled into a single set

�k = k-th genotype effect; a separate effect is fitted for each candidate variety, while a
   common effect is fitted for the reference set.

xk = dummy variable. xk = 1 for reference set, xk = 0 for candidates
akm = random genetic effect for m-th reference variety (akm = 0 for candidate varieties)
uj = effect of j-th year
Mkmj = mean of km-th genotype in j-th year
ekmj = residual associated with ykmj

Based on estimates of var(akm) it would be possible to estimate quantiles of the distribution of
reference varieties (see section 4 Discussion for further details).
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2.4 Comparison of methods with a rapeseed data set

To study the behaviour of the moving average procedure and to demonstrate the practicability
of the ANCOVA method we analysed a three year data set from the official German rapeseed
testing program.  The trials were conducted in the years 2001-2003 as randomised complete
block designs with three replicates.  Following quantitative characteristics were observed on
60 plants (3*20 plants):

M11:  Cotyledon:  length
M12:  Cotyledon:  width
M14:  Leaf:  length
M15:  Leaf:  width
M19:  Leaf:  number of lobes
M110:  Leaf:  length of petiole
M21:  Plant:  total length including side branches
M212:  Siliqua:  length
M213:  Siliqua:  length of beak
M214:  Siliqua:  width
M216:  Siliqua:  length of peduncle
M31:  Time of flowering
M32:  Flower:  length of petals
M33:  Flower:  width of petals

2.5 LOESS-Smoother

To further investigate the relation between SD and mean a non-parametric LOESS-smoother
was fitted to log-transformed data (CLEVELAND 1979).  To find the optimal smoothing it is
necessary to select a span for the smoother by minimizing a suitable criterion.  Here the
AICC1-criterion was used (DURBAN et al. 2003, HURVICH et al. 1998).  An algorithm to
find the optimal parameter is implemented in the LOESS procedure of the SAS System by the
macro “%smoothselect”.  Setting the smoothing parameter to s=1 means that all observations
are used to fit a polynomial trend and estimate predicted values for each observation.  With
s=0.5 only 50% of data are used and with s=0.1 only 10% respectively.  With a total of more
than 270 observations using a moving average of only nine observations equals a local fitting
with a linear regression and s = 0.033.

3.  Results

3.1 Investigation of SD-mean relation

Fig. 1 shows plots of log SD against the mean for 14 different characteristics of rapeseed.
Fig. 2 and 3 show observed data, linear trend, moving average trend and LOESS-smoother for
one separate year and characteristic M11.
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In 31 of 42 cases smoothing the rapeseed data by using information from all observations and
fitting a smooth polynomial trend with few parameters was optimal according to the AICC1-
criterion (Tab. 1).  At least 55 observations were used to estimate the local LOESS-smoother.
For most characteristics a linear trend, allowing for year specific deviations sufficed to
describe the SD-mean relation (Tab. 2).  For most characteristics the reference varieties also
differed in homogeneity (Tab. 3).
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Fig. 1:  Log SD plotted against the mean of 14 different characteristics.  Dots = first year,
triangles = second year, stars = third year.
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Fig. 2:  Characteristic 'M11', year 1.  Solid line = nine-point moving averages, circles =
observed data.  Line fitted to observed data (dashed) is a linear regression.

Fig. 3:  Characteristic 'M11', year 1.  Solid line = optimal LOESS-smoother, circles =
observed data.  Line fitted to observed data (dashed) is a linear regression.
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Table 1:  Optimal smoothing parameter values (s) in LOESS-procedure for 14 different
characteristics of rapeseed data. s=1 is equivalent to using all observations to fit a
polynomial trend.  Optimality criterion AICC1 (HURVICH et al. 1998).

year 1 year 2 year 3
Characteristic s points in local

neighborhood
s points in local

neighborhood
s points in local

neighborhood
M11 1 274 1 276 1 276

M110 1 275 0.5 138 1 276
M12 1 274 1 276 1 276
M14 1 275 1 276 1 276
M15 1 275 1 276 1 276
M19 0.3 81 0.3 81 1 272
M21 0.4 110 1 271 0.6 165
M212 1 275 1 271 1 275
M213 1 275 1 271 0.5 137
M214 1 275 1 271 1 275
M216 0.7 192 1 271 1 275
M31 0.3 82 0.3 82 0.4 110
M32 1 276 1 276 0.9 246
M33 1 276 1 276 1 274

Table 2:  F-values for SD–mean relation.  Quadratic polynomial for fj().  Model fitted to
log(SD+1).  Kenward-Roger method was used to compute standard errors and degrees of
freedom under random effects model (reference varieties random, candidates fixed).

Characteristic Linear Linear*Year Quadratic Quadratic*Year
M11 434.34 *** 4.74 ** 0.23 ns 3.07 *
M110 196.73 *** 51.46 *** 2.08 ns 0.01 ns

M12 265.20 *** 0.80 ns 0.15 ns 0.56 ns

M14 158.04 *** 48.77 *** 0.01 ns 1.30 ns

M15 178.20 *** 11.61 *** 0.47 ns 1.50 ns

M19 38.28 *** 27.93 *** 43.83 *** 6.17 **
M21 48.34 *** 8.32 *** 12.66 *** 1.03 ns

M212 64.68 *** 6.43 ** 0.46 ns 1.02 ns

M213 134.00 *** 5.82 ** 0.00 ns 1.82 ns

M214 5.90 * 5.57 ** 5.83 * 0.61 ns

M216 297.89 *** 3.53 * 0.32 ns 0.66 ns

M31 10.54 ** 125.85 *** 25.71 *** 36.56 ***
M32 32.40 *** 0.44 ns 0.19 ns 1.73 ns

M33 59.15 *** 0.24 ns 0.39 ns 0.05 ns

*, **, *** = significant F-test according to � = 0.05, 0.01, 0.001 respectively; ns = not significant

Polynomial model terms
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Table 3:  F-tests for genetic effects of reference varieties (akm), variance components for akm

and ekmj.  Quadratic polynomial for fj().  Model fitted to log(SD+1).  Kenward-Roger method
used to compute standard errors and degrees of freedom.
Characteristic F-test for akm

§s.e.d.
F-

value
p-value var(akm) var(ekmj) fixed random

M11 2.10 <0.0001 0.00470 0.01362 0.0671 0.0677
M12 1.97 <0.0001 0.00403 0.01252 0.0648 0.0649
M14 1.06 0.2665 0.00022 0.01747 0.0786 0.0773
M15 0.95 0.6850 0.00000 0.01746 0.0799 0.0778
M19 1.31 0.0029 0.00135 0.01903 0.0791 0.0799
M110 1.23 0.0174 0.00102 0.01714 0.0759 0.0760
M21 3.30 <0.0001 0.01337 0.01830 0.0773 0.0787
M212 3.11 <0.0001 0.01253 0.01841 0.0785 0.0790
M213 1.78 <0.0001 0.00483 0.01867 0.0792 0.0792
M214 1.97 <0.0001 0.00517 0.01583 0.0729 0.0730
M216 3.11 <0.0001 0.01401 0.02193 0.0849 0.0863
M31 2.86 <0.0001 0.01373 0.02307 0.0883 0.0884
M32 2.22 <0.0001 0.01305 0.03192 0.1045 0.1040
M33 2.98 <0.0001 0.01550 0.02332 0.0887 0.0888
§ Standard error of a difference between mean of reference varieties and a candidate variety
with three years.  Depending on purpose, reference varieties assumed fixed (F-test) or random
[estimation of var(akm)].

3.2 Analysis of characteristic “M11” (cotyledon length)

We fitted model (6) to characteristic “M11”of the rapeseed data using all reference varieties
and candidate varieties with two or three years of testing.  Variety means of adjusted log SD
of reference varieties followed a normal distribution (Fig. 4).  The adjusted SD means of
candidate varieties showed a similar distribution (Fig. 5).

Fig. 4:  Histogram for least square means of log(SD+1) of reference varieties;Characteristic
'M11' - cotyledon length, solid line =expected density under normality
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Fig. 5:  Boxplot of least square means of log(SD+1) of reference and candidate varieties;
Characteristic 'M11' . cotyledon length
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Table 4:  Mean of reference varieties, mean of candidates, 95%-quantile of reference
varieties, COYU-uniformity-criterion and fraction of rejected candidates according to
different criteria

reference varieties candidates candidates rejected
[%] according to …

Chara
cterist
ic

Mean Std
Dev

95%
quantile

95%-confidence
limits for 95%-

quantile

UC
*** Mean Std

Dev
UC
***

crit 1
*

crit 2
**

M11 0.846 0.058 0.943 0.932 0.953 0.958 0.841 0.073 6.3 9.1 0.0
M110 2.904 0.082 3.040 3.025 3.055 3.244 2.829 0.091 0.0 2.1 0.0
M12 1.121 0.061 1.221 1.211 1.234 1.245 1.128 0.072 4.9 7.7 0.7
M15 2.524 0.069 2.642 2.626 2.652 2.722 2.461 0.091 0.0 1.4 0.0
M19 0.755 0.054 0.827 0.834 0.853 0.866 0.765 0.074 6.3 18.2 0.7
M21 2.150 0.147 2.378 2.368 2.420 2.442 2.129 0.138 3.5 3.5 0.0
M212 1.818 0.130 2.048 2.009 2.056 2.043 1.779 0.133 2.8 2.8 0.0
M213 1.016 0.070 1.137 1.119 1.144 1.163 0.966 0.079 0.7 2.1 0.0
M214 0.266 0.025 0.312 0.302 0.311 0.317 0.265 0.031 5.6 8.4 0.7
M216 1.227 0.132 1.464 1.422 1.470 1.427 1.190 0.134 4.2 0.7 0.7
M31 1.337 0.124 1.522 1.519 1.564 1.403 1.381 0.128 9.1 15.4 0.7
M32 0.571 0.070 0.684 0.675 0.701 0.716 0.567 0.085 4.9 5.6 2.1
M33 0.470 0.060 0.574 0.559 0.581 0.588 0.474 0.070 5.6 6.3 2.8
mean 4.1 6.4 0.6
* criterion 1 = lsmean of candiate > 95% quantile of reference varieties
** criterion 2 = upper 95% confidence limit of lsmean of candiate > 95% quantile of reference varieties
*** COYU-criterion according to UPOV (2004), see eq. 5

4.  Discussion

4.1 Critical comments on COYU

Parametric smoother versus moving averages (COYU-procedure step 3):  In most cases in the
rapeseed data there is an SD-mean trend, but it is a rather smooth one (Fig. 1).  Thus, one
might consider fitting a smooth trend.  There are many options for this, e.g., linear or
polynomial regression or LOESS (CLEVELAND 1979).  Searching for the best smoothing
parameter shows, that a LOESS-smother should use information from all observations
(Tab. 1).  A linear or quadratic regression will usually suffice.  Because of the high portion of
random error, moving average procedures do not seem appropriate.  The uneven and jagged
shape of the moving average raises the question whether an adjustment based on moving
averages produces overfitting and makes the adjusted data more noisy than the original data
(Fig. 2).  Rather than just using a subset of the reference varieties, as is the case with the
current moving average procedure, it may be better to use all reference varieties to fit the
trend, as with the procedure proposed here.  In the present paper we have used all varieties,
including the candidate varieties, for computing the trend.  This was done in order to have as
much data as posssible and because there did not seem to be critical outliers.  In routine
application, one would want to exclude candidates from trend computations.  This may be
done in a straightforward fashion by extending model (7) using dummy coding.
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Adjustment by subtracting moving average (COYU-procedure step 4):  The adjustment
introduces two types of correlations.  The subtraction of moving averages causes a correlation
between reference varieties with similar character means and additionally the addition of the
year grand mean adds a correlation within the same year.  The ANOVA in steps 5 and 6 of the
COYU-procedure ignores these correlations.  It is not clear how robust the procedure is to
these correlations, which constitute a violation of the usual ANOVA assumptions.

Because of the moving average procedure the resulting adjusted SDs also have a lower
variance than the original data.  This underestimation of variance diminishes the magnitude of
the uniformity criterion (step 5) and therefore influences the probability of rejecting a
canditate.

Assumption of homogeneous adjusted means:  Model (4), which is used in the COYU
procedure to estimate the variance V, has no variety main effect.  This implies the strong
assumption that all reference varieties have the same mean.  The results in Table 3 show that
this assumption is not generally tenable.

Validity of uniformity criterion (COYU-procedure step 5 and 6):  The calculation of the
uniformity criterion in eq. (5) yields a confidence limit for the difference between the mean of
transformed standard deviations of the reference varieties and a single candidate variety,

�
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If a mean adjusted SD of a candidate variety is higher than the criterion UC�, the variety is
rejected.  The criterion implies a test of the null hypothesis that the candidate variety has a
mean log SD below the mean of the reference set.  This is a rather stringent criterion, which is
expected to notably increase uniformity of new varieties in the long run.  Table 3 shows that
uniformity differs significantly between reference varieties in most characteristics.  Thus, if
the mean of the reference varieties were used as a threshold for uniformity of the reference
varieties themselves, then 50% of the reference varieties would not be accepted because of a
lack of uniformity! A further critical point is the dependence of UC� on the power of the test:
the larger the number of reference varieties, the better the power of the test, and the more
candidate varieties will be rejected.  We think that a criterion of uniformity should be defined
so that it is independent of the power of a test and of the number of reference varieties.

4.2 Proposal for a different criterion

We would suggest to use a higher value than the mean of transformed standard deviations of
reference varieties as threshold.  The COYU-model assumes that there is a common SD-mean
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of all reference varieties, but Table 3 shows that reference varieties differ significantly in their
mean for most characteristics.  Inspection of SD-means of single reference varieties shows
that they are more or less normally distributed around the mean.  Consequently following this
idea it would be appropriate to take reference varieties as random, estimate their mean and
variance and calculate a critical value (e.g. the 95-quantile).  Also it is possible to regard
reference varieties as fixed and calculate least square means.  Independent from the question
of whether reference varieties are random or fixed in a linear model analysis, one can
calculate quantiles of the distribution of reference variety means of transformed standard
deviations.  The quantile-concept allows the definition of criterion for the selection of uniform
varieties.  We would propose that candidates should be at least as homogenous as the p100%-
quantile of reference varieties, with a suitable choice of the fraction p.  According to the
COYU-procedure of early rejection or acceptance (UPOV, 2004), a candidate variety may be
accepted/rejected after a two or three years of testing if its mean is significantly (e.g. with 5%
type I error) lower/higher than the estimated critical quantile.

In the rapeseed example 6,4% of candidates*characteristic combinations exceeded 95%-
quantile and 4,1% of combinations exceeded the original COYU-criterion (Table 4).  Both
thresholds probably lead to a high fraction of rejected candidates, because non-uniformity in
one characteristic is enough to give a reason for rejection.  In this context we should pay
attention to the problem of multiple testing.  If many are measured, the probability of a
significant non-uniformity in a single characteristic will increase.  It may therefore be
appropriate to work with a somewhat higher value for the quantile fraction p, e.g., p = 0.975
or p = 0.99.
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