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SPATIAL DEPENDENCE AND BLOCK DESIGNS IN
DUS HERBAGE TRIALS

SUMMARY

Data from nine herbage DUS trials were investigated for evidence of spatial
dependence. It was most evident in variates measuring the overall dimensions of the plants,
especially late season variates. On average, 45% of the residual variation in the plot means of
the spatially dependent variates was estimated to be of a spatial nature. Consequently, it is
likely that the efficiency of analysis of these variates would be improved by using spatial
analysis instead of non-spatial analysis or by using alpha (incomplete block) designs instead
of complete block designs. The spatial information was used to determine the optimal
incomplete block sizes and the likely increase in efficiency due to using alpha designs instead
of complete block designs.

INTRODUCTION

Observations made on field trials are prone to spatial dependence between plots caused
by spatial variation in fertility, moisture, intercepted light, and other environmental factors
(Grondona et al. 1996). Conditions in plots spatially close together are more likely to be
similar than in plots further apart, so, providing the plants are not in competition, observations
made on plants grown on spatially close plots are more likely to be similar in those
characteristics that are affected by the environmental conditions than are observations made
on plants grown on more distant plots (van Es & van Es 1993).

The main objective of DUS trials is to obtain precise estimates of the differences in
character means of pairs of varieties. To estimate the means efficiently, i.e. with small
variances, it is necessary to minimise the variation that is residual, i.e. not due to variety
effects. When the residual variation is caused by spatial dependence, the experimenter can
reduce it “a posteriori’ by using a spatial analysis (see Watson 2000 for further detail). He can
also to attempt to reduce it “a priori’ by the choice of design, which includes the block design
and the block and plot sizes, configurations and orientations (Cressie 1991; Grondona et al.
1996; Kristensen & Ersbgll 1992; van Es & van Es 1993). When the data are spatially
dependent, the choice of design also affects the efficiency of estimation of variety effects due
to the positions of the varieties within the trial (Martin 1986; van Es & van Es 1993).

The conventional analysis of variance of a classical randomized design is non-spatial
and is based on ordinary least squares (OLS). In the presence of spatial dependence, OLS
estimators of variety effects are unbiased (Bailey 1981). However, they are not efficient in
that they do not have minimal error variances. Further, when the data are spatially dependent,
the OLS estimates of the variances of the variety estimates are inappropriate because they use
an average estimate of error based on a single estimate of the residual variation. This ignores
the fact that some variety comparisons involve plots that are a short distance apart and so have
a smaller variance than those with plots that are a greater distance apart (van Es & van Es
1993). In consequence, if variety differences are small and OLS is used, strong spatial
dependence may reduce the power of an analysis to correctly estimate and identify variety
differences.
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Clearly, if spatial dependence is likely, the ideal would be to use a spatial design and a
spatial method of analysis. However this has cost implications in terms of more complex
analysis and interpretation, and the benefits depend on the strength and range of the spatial
dependence. The purpose of this paper is to study the prevalence and extent of spatial
dependency in data arising from spaced plant herbage DUS trials, and to assess its implication
on the design and analysis of DUS trials, which currently ignore any spatial dependence
between observations.

METHODS

The Field Trial Data

The data came from DUS spaced plant herbage variety trials conducted at Crossnacreevy,
Co. Down. There were nine trials comprising three series of ryegrass trials: tetraploid
perennial (PRT), tetraploid italian (IRT) and diploid italian (IRD), in each of 1989, 1990 and
1991. The trials are described in Watson (2000). The plants in a trial formed an incomplete
grid owing to the presence of guard plants and walkways and the withdrawal of varieties
during the trial. Eleven characters or variates were observed on each plant (Table 1).

The Random Field Model

The spatial dependence of the data was investigated by fitting a random field model:
Yi= Mi + & i=1,...n

where Y, is the random variable observed on plant i, and p;, the mean structure for plant i, is a
composite term comprising an overall mean, variety effects and random effects due to
location or block effects. The terms g represent the spatially dependent random error
variables or error structure. They are assumed to have zero expectation and be such that the
variance of the differences between pairs of error variables, say € and €, where plants i and
are located distance h apart, has intrinsic stationarity so that V(g - €) = 2y(h). This implies
that the variance depends only on the distance or lag, h, between the locations and not on the

locations themselves. The function y(h) relating the variance to h is known as the
semivariogram and the estimate of it for a given value of h as a semivariance.

The variability of comparisons between observations tends to increase as the separation
between plants increases up to, typically, a finite lag a known as the range of influence of the
semivariogram. This marks the limit beyond which observations are spatially independent
(Fig. 1). For lags greater than the range, the variance between observations remains constant
and is called the sill (c,+c). As the lag decreases towards O, the semivariance approaches the
nugget effect (c,), which is a measure of the inherent or non-spatial variation (including
measurement errors). The partial sill (c) (Cressie 1991) is a measure of the strength of the
spatial dependence.
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Fig. 1. Features of a typical semivariogram

Estimating Semivariances

The data were adjusted for the mean structure using analysis of variance, leaving the
residuals. These were placed in an array representing the layout of the plants in the field,
from which a set of semivariance estimates at different lags were obtained both from the
columns and from the rows. For example, the column semivariance at each lag h was
calculated as the mean over columns of half the squared difference (i.e. the semivariance) of
all pairs of non-missing residuals within the same column located h rows apart. This was
done for each of the 11 variates in each of the nine trials.

The resulting semivariance estimates were biased because they were calculated using
treatment adjusted residuals (Cressie 1991). The bias could not be adjusted for because it
depends on the lag and is different for the row and column semivariances (Watson 1995).

Fitting Semivariograms

The spherical function model was chosen to model the underlying semivariograms and
was fitted to the semivariances by weighted least squares. Details are given in the appendix.
The curve was fitted separately to the row and column semivariances, because of their
different biases, and only to semivariances at lags of up to half the maximum lag.

Assessing the spatial dependence

Graphical plots of the row and column semivariances against lag showed that some
variates had little or no spatial dependence, whereas others had semivariances that first
increased and then levelled off in a way characteristic of spatially dependent variates.
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A variate susceptible to spatial dependency would be expected to show evidence of
spatial dependency in all years of a particular trial type, although not necessarily in all trial
types as different genotypes may not be equally susceptible to spatial dependence.
Consequently, only those variate-by-trial type combinations that had at least one of their row
or column sets of semivariances satisfactorily fitted by a spherical function curve in all three
years were considered as potentially spatially dependent (Table 2). The goodness of fit of the

fitted curves was measured by the weighted coefficient of determination, R’ ( McBratney &

Webster 1986). Fig. 2 shows the 1989 row and column semivariances of the variates
considered spatially dependent for the PRT trial type.

THE SPATIAL ANALYSIS

Six of the 11 variates were considered spatially dependent in one or more trial types.
All measure the early or late season overall dimensions of the plants. That the curves in the
late season PLSEe.30, PLSe+30, PLSNe+30 Variates tended to fit better might indicate that any
spatial dependence is shown more clearly in late season variates than in earlier ones. This is
possibly due to the mature plants reflecting more clearly the effects of the spatial dependency
factors. The “date of ear emergence’ variate, which is especially important in making DUS
decisions about varieties, was not considered spatially dependent. Just one variate was
spatially dependent in the IRD trials compared to all six in the PRT trials and five in the IRT
trials. This might be due to ploidy (see Watson 2000 for details). The layout of a trial's pairs
of blocks (parallel or in series) did not seem to affect the chance of a curve being satisfactorily
fitted.

The results for the PHs, and W, variates require caution, as the curves in the former were
poorly fitted in the IRT trials and the ranges in the latter are very large suggesting the possible
presence of an underlying trend in the data. Excluding these variates, on average the nugget
was 85% of the sill and the range was 12 lags (9m).

DESIGN CONSIDERATIONS

The fitted semivariograms were then used to predict the efficiency that would have been
achieved had various alpha (incomplete block) designs (Patterson & Williams, 1976) been
used instead of a complete block design. Here efficiency is taken to be the ratio of the
average variance of variety differences from the complete block analysis to the average
variance from the appropriate incomplete block analysis with recovery of inter-block
information. The semivariogram derived from the individual plant observations, y(h), was
used to calculate y,(h), the semivariance of the plot means of observations on two plots of p

plants arranged in parallel and located h lags apart (see appendix). As the plots of the spaced
plant herbage trials were laid out in a one-dimensional arrangement within the blocks, the
yp(h) could be used to postblock the trials (Patterson & Hunter 1983). This allowed

prediction of the efficiency that would have been likely had each of the blocks in the original
complete block design been divided into incomplete blocks and an alpha design used. Details
are given in the appendix.

The efficiencies of alpha designs with blocks of 2,..., 12, 14, 16 and 20 plots in a trial
with 96 varieties, 6 replicates and 10 plants per plot were predicted from the average fitted
semivariogram of each variate of each trial type. The efficiencies of designs with just one
plant per plot were also predicted. The optimum block sizes and corresponding maximum
efficiencies are given in Table 2. The percentage of the variation that is likely to be spatial
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was calculated for the plot means of 10 plants as the percentage of partial sill to sill using the
semivariances Y;,(h) and using the semivariances y(h) for the single plant means. These

are shown in Table 2.

The more plants plot means are based on, the less the variation among the plot means,
however, the greater the proportion of the total variation among the plot means that is spatial.
This causes the optimal block sizes of the alpha design trials with 10 plants per plot to contain
fewer plots than the optimal block sizes of the trials with single plant plots (Table 2). See
Watson (2000) for details.

DISCUSSION

On average only 15% of the error variation of the spatially dependent variates was
spatial on a single plant basis with a range of 9m or 2.2 times the average of the plot
dimensions. However, this study shows that the plot means of 10 plants are likely to be more
strongly spatially dependent with on average 46% of the predicted variation of a spatial nature
and the same range. Grondona & Cressie (1991) and Gilmour et al. (1997) found spatial
analysis increased efficiency by 32% and 600% (in a sophisticated analysis) respectively
when 40% (inferred from graphs) and 65% of the unexplained variation was spatial with a
range 2.4 times and 1.5 times the average of the plot dimensions. Although the extent to
which a spatial analysis of the spatially dependent variates would identify distinctnesses more
efficiently than the current non-spatial analysis cannot be directly determined from this study,
it is unlikely to be negligible.

Needing a reliable semivariogram estimate for a full spatial analysis of variety effects is
a potential drawback as, even ignoring the Wy, and PHg, variates, there was considerable
variation in the shape of the fitted semivariogram between trials for a variate. Part of the
variation was due to differences in the magnitude of the observations (Watson 2000).
Whether the remainder was sampling variation or due to different underlying semivariograms
at the different but not distant trial sites can't be told from this study.

A second major drawback is the relative complexity of spatial analysis and the
interpretation of the results as the standard errors differ for every pair of varieties compared.
However, if a non-spatial analysis is used in the presence of spatial dependence, the different
standard errors will still exist even though they are ignored. The greater the spatial
dependency, the more potentially misleading the standard errors for decision making
concerning variety distinctnesses.

One option is to improve the trial design. It is not practicable to space the plots to
ensure spatial independence and the large numbers of varieties involved require prohibitive
replication with either the nearest neighbour balanced designs suggested by Martin (1986) or
the balanced incomplete block designs suggested by van Es & van Es (1993). However, van
Es & van Es (1993) also suggest the use of incomplete block designs such as alpha designs
chosen to equalize, as far as possible, the average distance of each variety comparison. This
could both improve variety effect estimation and reduce the residual variation.

Given a reliable semivariogram, it may, as seen in this study, be used to compare the
efficiencies of different incomplete block designs. Of all the possible alpha designs for a trial
with 96 varieties in 6 replicates and 10 plants per plot, those with incomplete blocks of
between 4 and 9 plots gave the maximum predicted efficiencies for the spatially dependent
variates of the spaced plant herbage trials. These block sizes are similar to the optimal block
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size of 8 plots for the same size trial that Ainsley et al. (1987) report based on the results of
29 ryegrass spaced plant variety trials grown between 1974 and 1983 at Crossnacreevy. The
predicted increases in efficiency of between 9 and 46% in this study are comparable with the
16% reported by Ainsley et al. (1987) for the variate He, although He was not classed as
spatially dependent in this study.

A reliable semivariogram may also be used to compare the effect of the variety
positions on the efficiency of variety effect estimation of a planned design (Cressie 1991) and
to assess the effects of altering the plot dimensions and block configurations on the residual
variances (Kristensen & Ersbgll 1992). These latter changes would only be worthwhile if
they improved the efficiency of estimation of the variety effects of the spatially dependent
variates sufficiently to maintain the effectiveness of the DUS decision making process while
allowing a reduction in trial costs. By contrast, the use of alpha designs would entail no extra
costs and would allow the spatially dependent variates to be analysed more efficiently,
possibly by spatial methods. However, it remains to be seen whether the increase in
efficiency would be sufficient to make the spatially dependent variates as useful for DUS
decision making as the non-spatially dependent ones.

APPENDIX

i) The spherical function

The spherical function is given by

0 h=0
3h R
y(h;6) = C°+C|£_2_a3 O<h<a
C,+¢C a<h

where 0 is the vector of parameters (a, c,, €). It was fitted to the semivariances by weighted
least squares using N(h; )/[y(hj ; e)]2 as the weight for semivariance S(h;), where N(h,) is the

number of pairs of residuals from which S(h)) is calculated and y(hj; 6) is the value of the

spherical function at lag h;, j=1,... k.
i)  Obtaining y,(h) from y(h)

Let y,(h) denote the semivariance of the plot-means of observations on two plots, say plot 1

and plot 2, arranged in parallel h lags apart and each containing a row of p plants spaced 1 lag
apart. Lety(h)denote the semivariance of observations made on two plants lag h apart. Then

-2 (o)

-2 (p-rr) .

r=1 r=1

p-1

v, () :%!pv(hm

p
PROOF: y,(h) may be written as %V(Yl ~X,) where X, = e X;; and Xy, i=1...p are the
i=1
observations on the p plants in plot 1. Likewise, X, is the mean of the observations on the p
plants in plot 2.
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[ p-1 p ]
AL " (T )
RE! i=1 j=ivl
L i p-1 p-1 ]
= | Py +2 (-T2 (p-r)
L r=1 r=1

since the observations xi; and X,; are made on plants h lags apart, observations x;; and xy; are
made on plants /(j-i)* lags apart, and observations x;i and X, are made on plants

J(i-i)? +h? lags apart.

iii) Postblocking and the efficiency of an incomplete block design

The average within-block error mean square, MS(k), that would have been obtained had
each of the blocks of v plots of p plants in the original design been divided into s incomplete
blocks of k plots of p plants was obtained by postblocking using:

k-1

2 (k=h)y,(h)

- h=1
MS(K) = D

The efficiency of using a particular incomplete block design is the ratio of the average
variance of variety differences from the complete block analysis to the average variance from
the appropriate incomplete block analysis with recovery of inter-block information. Patterson
& Hunter (1983) give the efficiency as approximately
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Av-1)-(v-5s)
where E is the efficiency factor of the design (Patterson et al. 1978) which adjusts for the

increased variances of the variety differences due to the incomplete blocks, and A is the ratio
MS(v)/MS(K).

In predicting the efficiency of an incomplete block design with unequal block sizes, an
average value of A was used.
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Table 1. The variates observed on the spaced plant variety trials

Description and name of variate When measured

Hsp Natural average spring height of plant (cm)* March
Wsp Natural average spring width of plant, calculated as March

the mean of two widths taken at right angles from

above (cm)
PHsp Pulled average spring height of plant (cm)* March
He Natural height of plant at ear emergence (cm) May/June
We Width of plant at ear emergence, calculated in same May/June

way as W, variate (cm)
De Date of ear emergence (Days after 1st March) May/June
Ly Length of flag leaf of longest stem (cm) June/July
W; Width of flag leaf of longest stem (mm) June/July
PLSEc+3 Pulled length of the longest stem (including the ear) June/July

30 days after the mean date of ear emergence of the
within block row (or plot) (cm)

PLSe+30  Same as PLSEe.30 but excluding the ear (cm) June/July

PLSNe+30 Same as PLSEg.30 but up to the first node (cm) June/July

* Where a variate is described as natural, measurements are taken from the plant in its
undisturbed state.

+ Where a variate is described as pulled, the plant's leaves or stems are pulled straight
before measurement.
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Table 2. Mean parameter estimates, R2 values and the number out of six (2 directions x 3 years) curves fitted satisfactorily. Predicted optimal block

sizes and efficiencies for 96 varieties in six replicates, calculated using the spatial information (see text), are shown for p = 10 and p = 1 plant plots
together with estimates of the spatial variation of the means for the two plot sizes

No mean mean mean mean mean Pred’” Pred’ Pred>  Pred’ % * % *
Variate /satisf” nugget partial range  sill R2 block  effici- block effici- spatial  spatial
Trial fitted Co sill a CotcC size ency size ency variation variation
Type c p=10 p=10 p=1 p=1 p=10 p=1
PLSEe+s30
PRT 6 70.3 14.3 115 845 514 5 146.1 8 103.7 55.1 16.9
IRT 5 120.2 18.5 55 138.7  46.7 5 109.3 6 100.7 35.5 13.3
PLSe+30
PRT 6 44.9 8.6 114 535 46.9 5 142.9 8 103.4 534 16.1
IRT 4 89.2 16.3 6.5 1055 523 5 117.0 6 101.5 42.7 155
PLSNe+30
PRT 5 33.6 42 261 378 537 9 145.8 14 102.7 50.4 111
IRT 5 70.2 19.9 53 90.1 456 4 117.9 5 102.3 49.6 22.1
Hsp
PRT 5 36.0 32 209 392 425 9 129.1 12 101.4 40.6 8.2
Wsp
PRT 4 804 345 2779 1149 420 14 146.3 >20 102.8 80.8 30.0
IRD 4 66.1 218 1186 879 394 10 179.5 >20 105.8 76.0 24.8
IRT 5 85.4 6.6 99 920 385 7 112.0 8 100.5 29.8 7.2
PHsp
PRT 5 41.8 6.7 170 484 457 7 149.2 10 103.3 53.5 13.8
IRT 4 117.0 2.7 189 1196 140 11 104.7 16 100.0 14.7 2.3

* Percentage of mean partial sill to sill
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