

TWA/30/15 ORIGINAL: English DATE: August 27, 2001 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

TECHNICAL WORKING PARTY FOR AGRICULTURAL CROPS

Thirtieth Session Texcoco, Mexico, September 3 to 7, 2001

SOFTWARE USING PHENOTYPIC DISTANCE FOR DISTINCTNESS

Document prepared by experts from France

Slide 1

GAÏA

A SOFTWARE FOR ESTIMATING PHENOTYPICAL DISTANCES BETWEEN VARIETIES AND FOR MANAGING REFERENCE COLLECTION

Slide 2

OBJECT

The aim of this software for each candidate variety is to :

■ detect very distinct (distinct +) varieties at the end of the first year of study (on the basis of descriptions made in the field and stored in a database)

detect varieties which need to be further compared to close varieties during the second year of study

Slide 3

PRINCIPLE

The estimation of the phenotypical distance between 2 varieties is based on the addition of the differences observed for the different characteristics

Each difference observed is weighted by the crop expert according to the value of the difference and to the reliability of each characteristic

Maize example											
	Type of grain (QL)	Attitude of blade (QL)	Attitude of lateral branches (QL)	Anthocyanin coloration of glumes (01)	Length of husks (QL)	Number of rows of grain (QL)	Diameter of the ear (QT)	Time of anthesis (QT)			
Variety A	4	3	7	2	5	3	3	6			
Variety B	4	3	5	1	7	3	5	7	•••••		
Difference	0	0	2	1	2	0	2	1	•••••		
Weight	0	0	2	0	0	0	2	0			
(QL) = qualitative characteristics (QT) = quantitative characteristics											

Slide 5

Slide 6

DIFFERENT TYPES OF CHARACTERISTICS CAN BE USED IN THE SOFTWARE •• Qualitative characteristics observed in a 1 to 9 scale or transformed into 1 to 9 scale •• Quantitative characteristics measured •• Electrophoretic characteristics observed as presence or absence of each allele

Slide 7

• QUALITATIVE ANALYSIS																				
		Type of grain (QL) Attitude of blade (QL) Attitude of hencered		branches (QL)	Anthocyanin coloration of glumes (QL)		Length of husks (QL)	Number of rows of grain (QL)	Diameter of the ear (QT)	Time of anthesis (QL)										
Varie	Variety A 4			3		7		2		5	3	3	6							
Variety B			4		3		5		1		7	3	5	7	-					
Difference			0 0			2		1		2	0	2	1							
Weight			0		0		6)		0	0	0	2	0	$D_1 = 4$					
				Variety A																
			1	2	3	4	5	6	7	8	9									
		1	0	0	2	3	3	3	3	3	3									
		2		0	0	2	3	3	ß	3	3									
	B	3			0	0	2	3	₽.	3	3		For	each o	charac	cteristic,				
	iety	4				0	0	2	1	3	3		necessity to define the							
	ari	5					0	0	$\left(2\right)$	3	3		motiv of weights							
		6						0	σ	2	3	matrix of weights								
		7							0	0	2									
		8						_		0	0									
		9									0									

Slide 9

<u>Result of the step</u>	<u>(qualitative analysis)</u>
Maize : The threshold for distinct	ness is 6
\blacksquare If $D_1 \ge 6$	A and B are distinct +
■ In this case, $D_1 < 6$ we go to step ② (electroph	A and B are not distinct + horesis analysis)

Slide 13

Rules for decision at step ② (electrophoresis analysis) It is not possible to establish distinctness solely on the basis of a difference found in a characteristic derived by using electrophoresis In maize, necessity to have a phenotypical distance based on qualitative characteristics ≥ 2 to take into account the electrophoresis results After step ① and ② : 2 varieties A and B are distinct + if D₁ + D₂ ≥ 6 with D₁ ≥ 2 in our exemple, A and B are not distinct + (D₁ + D₂ = 5,5) we go to step ③

Slide 14

3 - <u>QUANTITATIVE ANALYSIS</u>

<u>Rule of distinctness</u> : a weight is associated when 2 differences are observed in 2 trials (1 trial = 1 location + 1 year)

Maize example : Length of plant

		Trial 1	Trial 2						
	Variety A	176 cm	190 cm	Trial 1	2004	37 cm			
	Variety B	140 cm	152 cm	<u>111ai 1</u>	15%	28 cm			
	Difference	36 cm	38 cm						
	Weight	3	6	<u>Trial 2</u>	20% 15%	32 cm 24 cm			
2 threshold values are fixed by the crop expert									
- If difference between A and B $<15\%$ of the mean lenght of the trial \qquad weight = 0 \qquad									
- If c	lifference betwee	we	ight = 3						
- If c	lifference betwee	we	weight $= 6$						

Slide 15

OTHER USES OF GAÏA IN FRANCE • Officially : for rapeseed • Under test : for cereals and sunflower • \$\sigma \sigma \sigm

Slide 18

[End of document]