

United Kingdom

Molecular Techniques: Discussion on molecular techniques in DUS examination

UPOV Technical Committee, 59th Session Geneva

Presentation by Dr Sigurd Ramans-Harborough

Delivering PBR for the future

Molecular techniques are of increasing importance

Genetic Technology Act 2023

Work is progressing for the implementation in England

繼 UK 離 Parliament

Parliamentary Bills

<u>UK Parliament</u> > <u>Business</u> > <u>Legislation</u> > <u>Parliamentary Bills</u> > Genetic Technology (Precision Breeding) Act 2023

Genetic Technology (Precision Breeding) Act 2023

Government Bill

Originated in the House of Commons, Session 2022-23

Bill feed

Update from the UK

United Kingdom is Exploring approaches to support DUS testing

Improve efficiency and quality of DUS testing in the UK

Two research and development projects are in progress, led by the Department for Environment, Food and Rural Affairs (Defra) in the UK in collaboration with the Animal and Plant Health Agency (APHA) and NIAB

Concept

Exploring new approaches

Genotyping

Analysis of genomic markers by Artificial Intelligence (AI)

Growing Tria

Defra funded projects

The aim

is to use marker data to inform the selection of similar varieties before the first cycle of the growing trial.

The ambition

is to remove the need for an additional test year through better trial design

Concept

Genotyping

Analysis of genomic markers by Artificial Intelligence (AI)

Growing Trial

New Project: DUS Molecular Markers in Barley

Aim:

To determine the most appropriate varieties for the growing trial.

To do this:

70 % of the barley reference collection is being analysed

Methods:

- Genotyping: 50K marker array
- Barley varieties selected to cover the full trait spectrum
- Incorporation of marker data in the DUS database to use alongside phenotypic data

Concept

Exploring new approaches

ng

Analysis of genomic markers by Artificial Intelligence (AI)

Growing Tria

Defra funded projects

The ambition

to efficiently analyse large complex data sets to inform the growing trial design, while not delaying the DUS test.

Concept

Analysis of genomic markers by Artificial Intelligence (AI)

Defra funded

Defra funded project

New Project: Al on soft fruit

Aim: Develop an Artificial Intelligence program to identify genomic markers with the potential to distinguish between varieties of Rubus idaeus L.

Methods:

- Genotyping-bysequencing (GBS)
- Whole genome sequencing
- Fully supervised machine learning, followed by unsupervised (deep) machine learning.

Artificial Intelligence software for

Open source to all

Following completion of the project and peer review of its results, Defra will produce a short summary report which will be available to all. Pending successful outcome of the project, Defra also aims to make the resulting prediction program available as open source to all.

Concept

Genotyping

Analysis of genomic markers by Artificial Intelligence

Growing Trial

Improve efficiency and quality of DUS testing in the UK

Minimizing the number of DUS growing cycles

Support the selection of varieties of common knowledge in the new era of precision breeding in the UK

.GL

© Crown copyright 2023

This information is licensed under the Open Government Licence v3.0. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/

Any enquiries regarding this publication should be sent to: pvs.helpdesk@apha.gov.uk

