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Introduction

1.  Development and selection of a set of universal core SSR primers is important in
germplasm certification, heterosis group division, genetic diversity analysis, variety purity
and identity detection, and DNA fingerprint database construction in maize. Maize was one
of the first crops used in the development of simple sequence repeat (SSR) primers, initially
developed from genomic or microsatellite enriched libraries, a costly and time-consuming
process!'l.  The large-scale development of SSR primers has benefited from the
implementation of the Maize Genome Sequencing project and the publication of a large
number of DNA sequence databases**!. More than 2,000 SSR primers have been developed
in maize. Their use, however, is limited by great variability among markers in polymorphism,
amplification quality, whether codominant inheritance, number of amplification sites, and
location and distribution in the genome, and should be thoroughly assessed to determine their
usefulness. A lack of systematic evaluations of SSR primers in maize has hampered their

widespread use.

2. A high throughput, automated detection platform is helpful for large-scale use of
SSR primers. Compared to other markers such as AFLP, RAPD and ISSR, the throughput of
SSR primer analysis is relatively low as it yields genotype information at only one site per
primer. To increase SSR analysis information content, multiplex PCR has been explored in
some crops. Multiplex PCR combined with automated fluorescence detection may
significantly increase SSR analysis throughput and reduce costs associated with large-scale
SSR genotyping. The few recently published studies investigating multiplex PCR in maize,
however, were limited by the fact that the constructed multiplex primer combinations were
research-specific, i.e. not universal. Additionally, the number of primers used in a
combination was low, typically ranging from two to four primers™".

3. The purpose of the current study was to thoroughly screen and assess published maize
SSR primers to establish a set of universal core SSR primers in maize. Core primers were
assessed and redesigned to construct a high throughput multiplex PCR amplification system
using automated capillary electrophoresis fluorescence detection.



BMT-TWA/Maize/2/4
page 3

Materials and methods

(a) Materials

4.  Representative maize inbred lines (n=15) and hybrids (n=15) from national regional
testing in China were used for primer screening, comparison between newly designed and
original primers and laboratory verification of the multiplex PCR combination system. Inbred
lines were ‘Huangzhao4’, ‘Chang7-2’, ‘Jing24’, ‘Jing89°, ‘87-1", ‘X178’, ‘Qi319’, ‘Jing501°,
‘Dan341’, ‘Tai411’, ‘HuangC’, ‘SWI1611°, ‘B73’, ‘Mol7’ and °‘E28’. Hybrids were
‘Ben2204’°, ‘Changcheng303°, ‘Q2104°, ‘Dankel’, ‘Aoshi3111’, ‘Dong0201°, ‘Hengfengl’,
‘M3309°, ‘ND5598’, ‘CMI10°, ‘ND311°, ‘Dong4326’, ‘Jingpin202’, ‘Tangyul6’ and
‘DH3702°. The inbred lines were purified through continuous selfing; hybrids with the
greatest genetic variation between lines and the minimum genetic variation within lines were
selected using morphological identification in the field and uniformity detection in the
laboratory 8]

(b)  Screening of primer polymorphism

(1) Reference literature screening
5.  Eight hundred total candidate primers were selected based on the amplification of more
than 1,900 SSR primers found in MaizeGDB (http://www.maizegdb.org/ssr.php), location of

primers on chromosomes, as well as an extensive literature review”'”). Primer inclusion
criteria were as follows:

(1) polymorphism: the number of alleles (amplification band number)>3 or
polymorphism information content (PIC) value >0.65;

(2) banding pattern distribution: distinct band size with no intensive or locally
intensive band distribution;

(3) chromosome distribution location: primers located exclusively on the
chromosomes and all candidate primers nearly evenly distributed

throughout the genome. Primer amplification efficiency was not a criterion for
candidate primer selection.

(1)) Laboratory rescreening

6. A total of 800 candidate primers were re-screened for polymorphism utilizing 15 inbred
lines. Eligible candidate primers were further assessed for heterozygosity at the primer site
using 15 hybrids. Primers were assessed based on both the reference literature and laboratory
results; 500 highly polymorphic candidate primers were identified.

(c) Candidate primer chromosome distribution and determination of a set of
universal core primers

7. The Maize molecular genetic map IBM2 2004 neighbors frame covering most
SSR primer sites was downloaded from MaizeGDB and used to identify the location of the
highly polymorphic candidate primers. The framework was plotted using a Marco program
compiled by the China Agricultural University.
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8.  The location of primers on the integrated map, as well as the principle of even
distribution were used to select 100 primers, 10 per chromosome, as a set of universal core
primers.

(d) Primer redesign and construction of a universal PCR amplification program

9. To facilitate multiplex PCR combination, the 100 candidate core primers were
redesigned according to uniform requirements. We used NCBI
(http://www.ncbi.nlm.nih.gov), MaizeGDB (http://www.maizegdb.org) and PlantGDB
(http://www.plantgdb.org) to retrieve the original genomic sequences corresponding to
candidate primer loci. These were then redesigned and assessed using Primer Premier 5.0 and
Oligo 6.22. Nomenclature of newly designed primers at the same polymorphic site was
specified as ‘name of the original primer + code of the designer + serial number’.

10. Given that the TM value for the newly designed primers was relatively high and the
optimal annealing temperature was 68°C, a two-step amplification program was constructed:
one cycle (94°C, 5 min); 35 cycles (94°C, 40 s; 68°C, 80 s) followed by a last cycle
(72°C, 10 min).

11. The original and newly designed primers at the same sites were detected using the
previously-mentioned amplification program; we investigate differences between original and
newly designed primers in amplification banding patterns and amplification efficiency. If the
location of the amplified bands was not as expected or the amplification efficiency was low,
primers were removed or new primers redesigned. Eligible new primers (at the same
microsatellite site) were used as candidate primers for further multiplex PCR combination.

(e) Construction of fluorescence multiplex PCR combination
(1)  Design requirements for multiplex PCR combination primers

(1) Each primer set was comprised of 10 primers, one per chromosome.

(2) The combination pattern was 3+3+2+2. Each set of primers was divided
into four groups based on fragment length. No overlap of amplification
products of primers labeled with the same fluorescence was allowed.
Primers of the same group were labeled with the same fluorescence
(FAM, NED, PET, or VIC).

(3) Interaction between sets of primers was as weak as possible, AG<13.
(i1)) Construction of ten-plex PCR combination.

12.  According to the location of candidate primers on maize chromosomes, 10 primers, one
primer per chromosome, were selected. The expected location of the primer was roughly
determined based on the distribution characteristics of primer amplification banding patterns.
Primers were designed and evaluated with Primer Premier 5.0 and Oligo 6.22. Multiplex
PCR assessment of primers was conducted with Primer Premier 5.0 and by experiment to
exclude primer combinations that could potentially result in significant primer interactions.

13.  PCR amplification was similar to that of new single primers. Electrophoresis detection
were conducted on a DNA analyser ABI3730XL. Fluorescent primers were synthesized with
reagents from ABI company.
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Results and analyses

(a) Determination of highly polymorphic primers

14. In total, 500 highly polymorphic primer sites were selected. Primer amplification
efficiency was not considered during the first step of screening since primer amplification
efficiency is directly associated with the quality of primer design and weak amplification
efficiency can be improved through redesigning primers according to conservative sequences
lateral to simple repeat sequences.

15. As none of the selected primers met all primer candidate criteria in some chromosome
regions, primers meeting a compromised criterion were used in these regions, such as primer
phi041. Primers were excluded based on low polymorphism (umc2259), intensive band
distribution making statistical analysis difficult (nc030), or discrepancy in the chromosome
location (umc1593, located at maize chromosome 3.05 and 7.03).

16. Hybrid amplification results were used to assess heterozygosity of primers, including
heterozygosis rate of the primer loci and whether or not abnormal amplification occurred
(three bands or asymmetric amplification of heterozygotic bands). Primers with low
heterozygosis rates or abnormal amplification were excluded.

17. A total of 500 highly polymorphic candidate primers with high levels of polymorphism
(mean PIC value, 0.74; mean number of alleles, 5.3) were identified (Tablel) and suitable
primers could then be selected from this primer set, significantly decreasing the screening
work during early stages of relevant research.

Table 1:  Polymorphism information and chromosome distribution of 500 highly
polymorphic candidate primers

PIC value

Length Primer Mean ) Mean number
Chromosome . (maximal,
(cM)  number  density .. of alleles
minimal; mean )
1 1137 59 19.3 0.70;0.83;0.76 5.6
2 770 54 14.3 0.64;0.78;0.73 5.0
3 842 58 14.5 0.63;0.83;0.74 53
4 804 50 16.1 0.64;0.84;0.74 5.1
5 676 53 12.8 0.64;0.81;0.72 5.5
6 579 46 12.6 0.66;0.84;0.77 5.7
7 644 52 12.4 0.60;0.77;0.70 4.4
8 632 47 13.4 0.60;0.75;0.75 5.8
9 805 46 17.5 0.64;0.84;0.73 59
10 533 35 15.2 0.64;0.81;0.73 5.0
all 7422 500 14.8 0.64;0.81;0.74 5.3

(b) Determination of a set of universal core primer loci

18. A genetic map (named maize HP-SSR composite map) was created to adjust the list of
candidate primers according to the location of primers on the chromosomes (Fig. 1). Of the
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500 highly polymorphic candidate primers 460 were located on the IBM2 2004 neighbors
frame map and the remaining 40 were integrated onto the IBM2 2004 neighbors frame map
based on their location on other genetic maps. This map was used to demonstrate the
chromosomal distribution of the candidate primers and to provide a reference for core primer
selection.

19. The full length of the maize HP-SSR composite map was 7167 cM, covering 97% of
IBM2 2004 neighbors frame map (full length, 7422 cM) with a mean primer density of
14.8 cM. Primer numbers varied from one chromosome to another (maximum, 59 on
chromosome 1; minimum, 35 on chromosome 10). Additionally, five vacant regions with a
length >70 cM were identified, including chromosome 1 (81.5 cM, 90.9 cM, 93.6 cM),
chromosome 2 (95.8 ¢cM), and chromosome 9 (201 cM). Vacancies resulted from the lack of
developed primers or highly polymorphic primers. Multiple candidate primers were
identified in certain chromosomal regions (for instance, 11 primers in bin 6.00 and bin 6.01),
all of which met the primer candidate criteria and would be further screened by comparing
their design difficulty level.

20. A total of 100 primers, 10 from each chromosome, were selected as a set of universal
core primers (Fig. 1). This set of highly polymorphic and evenly distributed universal core
primers may be preferentially used in general research, including variety certification,
heterosis group division, genetic diversity analysis and gene mapping.
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Fig.1: A maize HP composite map-distribution of 500 highly polymorphic candidate primers

on maize chromosomes
Underline = 100 primers selected 10 from each chromosome. Bold = 20 primers used in the two ten-plex PCR

compositions.
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Redesign of core primer sites and establishment of multiplex PCR
combinations

21. Original genomic sequences corresponding to primer sites must be obtained for primer
redesign. Of the 500 candidate primers, 432 original genomic sequences (390 from NCBI, 36
from Maize GDB and 6 from Plant GDB) were downloaded and primers were redesigned for
these sites. No original genomic sequences for the remaining 68 primers were found, so
additional effort is still needed to obtain their original genomic sequences by searching other
websites for these primers or by sequencing positive clones registered in maize genomic

BAC.

22. The construction of two sets of ten-plex PCR combinations used 20 of the 100 universal
core primers, two from each chromosome (Table 2).

Table 2:  Primers and combination modes of ten-plex PCR combination
Combin- Primer Amplification . Fluorescence
) BIN b) Primer sequence

ation name range labeled

GCTCGTCTCCTCCAGGTCAGG; VIC
1-1 4.01  phi072k4 413-433

CGTTGCCCATACATCATGCCTC

GGAGGTCGTCAGATGGAGTTCG; VIC
1-1 5.03 umcl705wl 273-330

CACGTACGGCAATGCAGACAAG

TCTCAGCTCCTGCTTATTGCTTTCG; VIC
1-1 6.00  bnlgl61k8 152-208

GATGGATGGAGCATGAGCTTGC

CGCCTTCAAGAATATCCTTGTGCC ; NED
1-2 9.03  phi065k9 399-419

GGACCCAGACCAGGTTCCACC

GGGTACGGTTTCGTTTCCTTTGG ; NED
1-2 2.03  bnlgl25kl 219-327

TGCATCTAACAGCATCCCTTGAGC

GATGCAAGCGGGAATCTGAATC; NED
1-2 10.04 umc2163k5 154

CGACGAAATTGCTGGGGTTC

AGTTGACATCGCCATCTTGGTGAC; FAM
1-3 1.03  bnlg439w1 319-385

GAACAAGCCCTTAGCGGGTTGTC

CCCCAAAATTCCAGGTGCC ; FAM
1-3 7.02  bnlgl792k8  192-250

CCTCGTCGTCTCCTACCAGAATG

TGAACCACCCGATGCAACTTG; PET
1-4 8.08  phi080k15 203-233

TTGATGGGCACGATCTCGTAGTC

GGACGTCGGTACTGGCAATGG; PET
1-4 3.09 bnlgl754w3 145

CCACCACGCTGTCGTAGTGCTC

TTCCTTTCCTCGGTTAGGCAACAG; PET
2-1 1.11  bnlg2331kl  377-432

CCAAAGCTGCCAGTTCCTAGATGAG

GAAGGGCAATGAATAGAGCCATGAG; PET
2-1 3.00 umc2105k3  286-330

ATGGACTCTGTGCGACTTGTACCG
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AACTCCCTGCCGGGACTCCT; PET
2-1 7.06  phil16k3 150-171

CGGCCATGGATGGGATACAAATAC

GGCTCGTTTAAGAACGGTTGATTGC; NED
2-2 2.08  bnlgl940k9 407

GCACTAGACGGCTGGCATTGG

CCCCTCTTCCTCAGCACCTTG; NED
2-2 507  bnlg2305k4 292

CGTCTTGTCTCCGTCCGTGTG

ACTGATCGCGACGAGTTAATTCAAAC; NED
2-2 9.01 umc2084w2  188-211

TACCGAAGAACAACGTCATTTCAGC

GCACTGAAATCTCCCATCATGTACG; FAM
2-3 10.07 bnlgl450k2  288-376

TACAGCTCTTCTTGGCATCGTCG

GCGCTTGGCATCTCCATGTATATC; FAM
2-3 8.03 umcl741k7  142-183

GACCATCATCTTTCCCTCGTGC

GCACACCCGTAGTAGCTGAGACTTG; VIC
2-4 4.06  bnlg2291k4 384

CATAACCTTGCCTCCCAAACCC

GATCCGCATTGTCAAATGACCAC; VIC
2-4 6.05  bnlgl702kl 265

AGGACACGCCATCGTCATCA

2 two sets of ten-plex combination, each with four groups;

®  newly designed primers at the same microsatellite locus were named as “original primer
name + designer code + serial number .

23.  Chosen primers were redesigned, and each ten-plex PCR combination was constructed
in the 3+3+2+2 mode, which has the following advantages: (a) only one ten-plex PCR
amplification and one electrophoresis detection are needed to detect 10 primers using
capillary electrophoresis and a five-color fluorescence detection system; and (b) even if a
conventional denaturing polyacrylamide gel system were used, compared with single
amplification, the detection efficiency is still increased 2.5-fold using only four PCR
amplifications and four electrophoresis detections.

24. Size ranges of amplification fragments of the 14 primers were determined by the
statistical results of DNA fingerprints of 96 maize inbred lines and 1300 maize hybrids (data
in press). Size ranges of the remaining seven primers were not determined as their DNA
fingerprint database has not been constructed, but the size of an allelic fragment of the
primers was estimated by oligo 6.22. Nevertheless, polyacrylamide gel electrophoresis
results demonstrated there was no overlap of amplification fragments in these combinations.

25. Compared with original primers, redesigned primers showed significant improvements
in every parameter studied. Different primers had similar sequence features and were readily
amplified under the same conditions (Table 3). Comparison of newly designed and original
primers demonstrated that the amplification bands of the new ones were located as expected
and the amplification efficiency was improved. Software assessments demonstrated that the
maximal AG value was 11.4 while experimental assessments of primer interactions also
demonstrated weak primer interactions (fig.2) .

Table 3 Comparison of original and newly designed primers
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. initiation  False immer Hair 3’-
Primer Product TM value GC content ) o ) )
name length (U:L:P) ¥ (UL:P) efficiency initiation (U;L; pin terminal
(U;P) (U;P) UL) (UL) AG

bnlg439 201-253 79.2;77.9;82.2 50:41.4:41.5 492483 91;131 4:8:5 33 7.9:8.5
bnlg439w1 319-385 75;75.4;85.6 50;56.5;47.9 469;522 117;99 3;3;4 3;3 6.1;6.7
bnlgl125 323-422 66.6;67.9;83.7 47.6;43.5;43.7 377,388 81;146 2;2;2 0;0 6.7;6.6
bnlg125k1 219-327 74.9;75.1;83.9 52.2;50.0;45.7 465;445 31;64 3;4;3 3;3 8.8;8.2
bnlg1754 215 68.5;68.6;87.9 50.0;55.0;55.8 450;401 86;136 4;6;3 0;3 8.8;8.2
bnlgl754w3 145 75.4;75.9:88.0  61.9:;63.6;56.6  447;431 88:58 6:33 03  8.4:82
phi072 142-162 78.6;78;78 50;42.9;34.5 533;484 103;113 6;6;4 3;0 6.4;9.7
phi072k4 413-433 74.3;;75.2;83.7 66.7;54.5;42.9 432;463 69;90 3;:4;3 3;3 8.2;9.4
umc1705 57-114 70.7;76.4;82.9 50;50;49.5 411;480 193;81 4;6;3 0;3 6.4;6.4
ume1705w1 273-330 73.9;74.4;87.4 59.1;54.5;52.6 425;464 98;92 2;6;3 0;0 8.4;6.7
bnlgl61 129-185 70.6;70.4;82.7 41.7;39.1;45.1 379;410 115;82 2;4;4 0;3 6.9;6.3
bnlg161k8 152-208 75.2;74.8:83.3 48.0;54.5:45.4  462;428 38:111 4:4:5 33 9.0:8.5
bnlg1792 113-171 68.0;68.4;81.9 50.0;45.0;44.4 431;444 120;97 4;2;4 0;0 6.4;7.0
bnlg1792k8 192-250 73.1;,72.8;84.4  57.9;56.5;47.2 471,426 0;65 4;2;4 03 9.4;6.9
phi080 243-273 75.9;75.1;87.9 54.5;54.5;58 464;407 78;69 4;4;3 3;4 5.5;6.3
phiO80k15 203-233  74.9;74.0;89.4  52.4;52.2;59.4  458;449 71;71 443 03 6.7;5.5
phi065 132-153 70.8;72; 83.6 50;50;47 379;415 33;76 4;4;3 3;3 5.5;6.7
phi065k9 399-419 75.2;75.7;88.4 50.0;66.7;54.2 497;436 94,88 4;3;3 43 9.4;9.4
umc2163 145 72.2;72.1;81.7  41.7:41.7;43.4  496;462 86:83 3;5:3 35 6.7;7.0
ume2163K5 154 73.6;73.4:82.5  50.0;55.0;44.8 495462 83:63 444 33 6679

a)

U: forward primer sequence; L:

reverse primer sequence; P: amplification products.

Fig.2: The first set of ten-plex PCR combinations detected in the ABI3730XL DNA sequencer
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Discussion

(@) Polymorphism of SSR primer sites

26. Previous studies have demonstrated that the polymorphism level of SSR primers is
associated with the number and the type of repeat units, the genomic region, the database
source for primer development and the materials used for detection.

27. Sharopova et al P! (2002) developed maize SSR primers and found that primer
polymorphism was positively correlated with the number of repeat units. Of the 1,051
primers developed, polymorphism levels increased significantly with an increase in the
number of repeat units. Masi et al '¥/(2003) studied bean SSR and demonstrated that the
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polymorphism level was higher in repeats of two or three bases than in repeats of more than
three bases, and was also higher in long repeat sequences compared to short ones.

28. Additional studies revealed differences primer density among various chromosomal
regions. Sharopova et al *1(2002) demonstrated that there was higher SSR marker density in
the centromere region than in the terminal region for chromosomes 2, 3, 5, 7, 8 and 10,
contributing to differences in varied recombination rates in different chromosomal regions.
Through sequence analysis of BAC clones of two maize centromeres, Nagaki et al ! (2003)
found mainly C-rich satellite sequences and centromere-specific retrotransposon sequences in
the centromeres. Macaulay et al'*” (2001) studied SSR primers in barley and found uneven
SSR distribution in the genome, with SSR marker density higher in the centromere region
than in other regions. In the current study, a greater number of highly polymorphic primers
were selected from regions adjacent to the centromere than from other regions. In addition,
few or no primers were selected from the terminal regions of the long arm of chromosomes 2,
9 and the short arm of chromosomes 4, 5 and 10. SSR marker-rich and SSR marker-free sites
were also identified in other regions, consistent with previous studies. Uneven distribution of
SSR primers throughout the genome was an obstacle for the selection of a set of universal
primers; as a consequence we reduced the stringency of the selection criteria for primer
polymorphism in some regions with low primer density so that an even distribution of primers
on chromosomes was ensured.

29. Studies in various crops have demonstrated that the polymorphism level was generally
lower in primers developed from ESTs with unknown functions and genes with known
functions compared to those developed from the entire genome Z'*%. That is, the
polymorphism level of SSR primers was generally higher in non-coding regions than in
coding regions. This may have been caused by a decrease in alleles in the breeding resource
from selection for specific allelic combinations, resulting in decreases in the polymorphism
level of linked SSR markers.

30. In addition, previous research has demonstrated that the evaluation of primer
polymorphism levels is greatly influenced by the material type and the range of materials
selected !'* 1. Although the level of polymorphism for many primers is not high in
cultivated varieties, the level may be higher in wild types or closely related species. The
selection of highly polymorphic primers in this study was based on common maize varieties,
making these primers significant to related studies on ordinary maize. Primers with low or no
polymorphism in common maize may still be of use in future research investigating a wider
variety of types.

(b)  Primer selection criteria and multiplex PCR combination

31. A variety of selection criteria have been proposed for SSR primers in different species,
such as potatom], sunflower?"! barley[zo], soybean[lg], wheat[zs], maize[26], ricem], grape[zg],
rape®”! and tomato™®”. These criteria include high polymorphism, high amplification quality,
even coverage of the entire genome and multiplex PCR amplification potential. In addition,
multiplex PCR combination has been explored in other species, such as maizel”,
sunflower” 1], cotton®® 2], ricel® 3], and soybean[34]. However, it is still difficult to obtain a set of
high-quality, universal core SSR primers and construct a multiplex PCR amplification system
for a certain species, given the limited quantity and quality of primers that completely meet

the aforementioned selection criteria.
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32. Because the 1,900 primers published in Maize GDB were designed by different
research institutes according to different criteria the quality of the designed primers and the
suitable amplification conditions are variable. As a result, there are many limitations for
multiplex PCR combination, such as differences in primer TM value, differences in the
optimal annealing temperatures, and relatively narrow size ranges of amplification products
of different primers. In spite of these limitations, strong primer interactions may exist
resulting in greater difficulty in selecting proper multiplex combinations.

33. Previous research on multiplex PCR combination in maize (Gethi et al, 2002;
Clerc et al, 2005; Wang et al, 2003) were limited by the fact that SSR primers were not
systematically screened for polymorphism and the polymorphism level of some primers was
relatively low. Moreover, the main considerations in those studies were the size range of
amplification fragments and primer interactions; an even distribution of primers on
chromosomes was not fully considered. Previously developed multiplex PCR primer
combinations were consequently only suitable for specific studies and only duplex to
tetraplex PCR combinations could be constructed, while stable, more than five-plex PCR
combinations were not constructed.

34. In order to obtain a set of universal SSR core primers of maize, a stepwise screening
strategy was adopted. First, polymorphism screening of the 1,900 SSR primer sites
throughout the genome was performed and 500 highly polymorphic SSR primers of maize
were obtained. Subsequently, 100 core primers were selected as a set of universal core
primers according to the even distribution principle. The set of core primers were redesigned
to improve the amplification quality so as to meet the requirements of ten-plex PCR primer
combination. Each primer combination consisted of 10 primers with one primer per
chromosome. Future research in our laboratory will construct 10 sets of ten-plex PCR primer
combinations. Compared with previous studies, the present strategy was interested in that the
screening of polymorphism and amplification quality was separated, and primer design and
multiplex PCR combination was conducted simultaneously. The level of polymorphism is an
inherent characteristic of microsatellite loci and is not associated with the quality of primer
design. Only through thorough screening can highly polymorphic primer sites be selected in
the entire genome of maize. Nevertheless, primer amplification quality was directly
associated with the quality of primer design which can be improved by redesigning at the
same microsatellite locus.

35. In this study, the ten-plex PCR combination established was based on highly
polymorphic core primers, evenly distributed throughout the genome. The primers used were
universal. For each set of ten-plex primer combinations, only one ten-plex PCR amplification
and one ten-plex electrophoresis were were required using capillary electrophoresis and a
five-color fluorescence system, resulting in high detection efficiency. Our data suggest the
multiplex PCR primer combinations obtained in the present study could be widely applied.
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