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1. Distance, Association, 
Dissimilarity Measures 

1. 1 Introduction 

Similarity and 

The success of agriculture has relied on exploitation of diversity in crop plants. This' diversity is used 
not only to try to achieve maximum benefit. but also to allow different crop types to be distinguished. 
As agriculture has developed, considerable effort has been made in order to produce crops to suit 
current requirements. To permit recompense or even profit from such work, legislation governing 
plant breeders' rights is in place in most countries, providing a system similar in many ways to 
parenting. Part of the basis of this system is the ability to identify differences between varieties so that 
the varieties can be distinguished one from another. The distinctness, uniformity and stability (DUS) 
rests carried out in assessing varieties rely on achieving a balance between declaring every plant 
distinct (and therefore declaring a variety non-uniform) and being able to distinguish between 
varieties. As the number of varieties increases greater resolution between varieties is required without 
making uniformity unnecessarily difficult to achieve, and without using characters that show undue 
variation in different environments. Statistical techniques have been used since the outset of this 
work, and are constantly under review. Appropriate combinations of statistical techniques and plant 
characters facilitate successful DUS resting (i.e. help meet the aims of DUS). This document 
discusses a variety of ways in which the differences or similarities between varieties may be 
quantified. Discussion of how these measures can be exploited is dealt with in other papers (see 
section 2 and paper by Piepho). 

1.2 Varietal Variation 

1.2.1 Source of Variation 
To establish an appropriate method of quantifying differences or similarities between varieties we 
need to consider the biological basis of those differences. Primarily it is genetically based differences 
th:lt are of interest for DUS work. Interactions between genotype and environment also merit 
consideration if the necessary conditions are easy to control (e.g. germination at two different 
temperatures). Within a crop different levels of genetic variation are present, variation within plants, 
variation between plants within a variety and variation between varieties. The variation present at 
each of these levels will depend on the breeding system of the crop in question, and on methods used 
by plant breeders. In a strongly outbreeding crop any variation within a variety will be distributed 
between the two classes of homozygotes and the hererozygotes. In a strongly inbreeding crop varietal 
variation is maintained as homozygores of different genotypes. 

1.2.2 Measurement of Variation 
Many different types of characters can be measured for DUS. These include morphological, 
agTOnomic and molecular data. In order to analyse these data to best advantage, as much use as 
possible of the known biology of the characters should be made. Measurements of any type may be 
genetic in nature if the observed phenotypes can be converted to genotypes. Translation of 
measurements to allele frequencies at different loci or to DNA sequence information allows best 
possible use of character information. Specific diversity and distance measures exist for genetic data 
(see below). Using data in this way may be likened to studying the factors underlying the observed 
variation. 

1.3 Measures 

1.3.1 Types of Measure 
A wealth of distance, association, similarity and dissimilarity measures exist in the literature - far too 
many to deal with here. This apparent excess of measures arises becJ.use it is often appropriate for a 
"new" measure or modification of an existing one to be used for a specific application. Many of the 
more commonly used measures are given in the appendix (the lists of synonyms are not exhaustive). 
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The mezurcs may be conveniently grouped by the type of data for which they suitable. Data may be 
dichotomous (binary, presence or absence), qualitative (multi-state) or quantitative in nature. Some 
me:LSUres have analogues for e:lCh of these classes of data. The concept of similarity between different 
organisms is easy to grasp, and intuitively linked to dissimilarity. Producing a number that 
adequately summarises the similarity or difference between two organisms is rather more difficult. 
Our concept of similarity is also affected by context. For example if we consider all plants, or even all 
crop plants we would think of wheat and barley as being similar. If we consider different varieties of 
wh~t. a rogue barley variety would be considered very different. Distance and similarity are relative 
me.J.Sures. We might consider the relative me.J.Surement absolute if we were able to compare all 
possible characters. A number of organisms with small genomes have had their DNA or RNA 
sequenced entirely (e.g. AIDS viruses). Individuals may be compared on the basis of their entire 
genome. This is not likely to be the case for crop plants for some time despite the projected increases 
in sequencing speed. 

1.3.2 Distance, Similarity and Dissimilarity 
The convenience of presentation of character score information in gr.1phica..l form reinforces the ideJ. 
of dist.:l.Ilcc and simil:lrity (or dissimilarity) being related to one another. The m~urement of 
disLJ.Ilce between individuals can be illustrated by consideration of Euclidean distance. If one 
considers two characters, character stateS or scores for e:1ch character may be plotted on a two 
dimensional graph. Each individual will be represented by a point. The distance between a pair of 
points repr~nLS th~ disr.::mce between a pair of individuals, and can thus be me:l.Sured. \\'hen there 
arc U1rce characters to be considered. this can be extended to three dimensions and, although difficult 
to \isu::!..lise. when there are n characters the distance between two individuals may be m~ured in n
dimcnsional space. In many cases it is possible to express a similarity in terms of a dissimilarity 

mc.:!.Scre. For ex:unple. for a similJrity coefficient where 0 :::; s :::; 1. there is an associated 

dissimilJrity such that d = 1- s . SimilJrity and dissimilarity measures may be thought of as 

complementary to one :mother. 

1.3.3 :'\1etric :Yieasures 
If ..... c consider a particular char:lcter for three individuJ.ls A, B and C we can calculate the pair-wise 
dis:..:.nccs between them DAB, DA.c. Dac. A distance m~ure can be said to be metric if DAB + DAc ~ 
D;;c for all three-way combinations of individuals. InitiJ.lly this seems generally true, but if negative 
va.lu:!S are present or if a m~ure is asymmetric (such that the distance from A to B is not the same as 
th::t from B to A), the measure will be non-metric. It is not essential that the me:l.Sures used are 

me::ic. but the propeny can be useful. 

I.JA Correlation Coefficients and Angular Coefficients 
Correbtion coefficients range from -1 to +1 and are therefore non-metric. They may be regarded as 
special c.:J.SeS of angular coefficients. These me:l.Sures do not imply that all values being compared are 
identi:J.l. and arc therefore not stri:tly similarity me:l.Sures. They are, however, sometimes useful in 
compJring shapes such as the profiles obtained from HPLC or densitometry. Other commonly used 
cce:licients include Pearson's product-moment correlation, Spearman's and Kendall's rank 
corr:::J:ions, the percent similarity coefficient and the cosine shape coefficienL 

1.4 Type of Data and Coding 
The d.J.t.:l associated with different char:lcters may be of different types. Sometimes the way in which 
cbtJ is collected will also affect how it is subsequently used. Table I shows different ways in which 

this micht be done for the length of hair covering a p:micular organism. 
In :my particular instance there mJy be :m obvious choice. This will depend on the distribution of the 
ch:u-:1cter for the individtnls being considered. the biology of the character, and for any applied use. 
the pr:1:ti~ity of obtaining the data. The first three rows o~ Ta~le 1 show how hair length might be 
mc.:lSurcd. If indi-.-iduals have hair of different lengths then 1t m1ght be best to m~ure the length of 
the hairs. This may be impracti~ble, so tr~ting the data as categorical data may be n~ess:J.ry 
(although some information may be lost). In the second case in Table 1 it is easy to see th:n the 
c:u.e:crics can be m:mged in a me=.ningful order. This is not always the case. 

329 



Description 
Individuals either have or lack 

hair 
Individuals have long short or no 
hair 
Individuals have different hair 
lengths 

Table I Hair length measuremenJ 

Type 

BMT/4/8 
page 4 

Dichotomous or Binary 

Qualitative or Multi-state 

Quantitative or Continuous 

Scores 
0/1 or+/- or present/absent 

long/short/none 

measure of length of hairs on 
individual 

The three different examples of qualitative measurements of hair colour in Table 2 illustrate this. In 
the first case (black/grey/white) the colours may be arranged in a logical order. In the second case 
(red/yellow/orange/white) no single "correct" arrangement of these colours exits. If the character is 
divided into two - the presence or absence of red and of yellow pigments in the hair - two dichotomous 

Description Tvpe Scores 
Individuals have black or white Dichotomous or Binary 0/1 or black/white 
hair 
Individuals have one of several Qualitative or Multi-state black/grey/white 
hair colours (black/~rrev/white) 
Individuals have one of several Qualitative or Multi-state red/yellow /orange/white 
hair ' 
colours( red/vellow loran 'l.e/w hite) 
Individuals have one of several Qualitative or Multi-state red/yellow /blue 
hair colours (red/vellow/blue) 
Individuals have hair varymg Quantitative or Continuous measure on scale of different grey 
between black and white levels 

Table 2 Hair colour measuremenJ 

characters are created which may be a better reflection of the observations. In the third case 
(red/yellow/blue) it is not possible to arrange the different classes into a sensible order. The 
characters might be reclassified as three separate dichotomous variables, and individuals scored for 
the presence of blue, red and yellow pigments. In this and many other cases, further investigation of 
the nature of the character under investigation gives valuable insight into appropriate representation 
or coding. Where characters correspond to different genotypes. it may be more appropriate to 
determine the genotype and use that to represent the character states. Further consideration of this is 
given below in the section on genetic measures. 

1.4.1 Recoding Quantitative Measures 
Quantitative measures can be expressed as single numerical values. Such data can clearly be ordered. 
It is possible to reccxle this information, although some of the information present in the original data 
may be lost. By subdividing a continuous range into a series of groups the data can be treated as 
multistate, or by reduction to two groups, as dichotomous. The data may also be reduced to multistate 
and then receded to prcxluce a series of dichotomous characters. Coding can be carried out to reflect 
information about the character in question e.g. additive, multiplicative etc. Choice of an appropriate 
number of groups in reduction to multistate data can result in retention of the bulk of the original 
information. It is worthy of note that receding quantitative characters as dichotomous may distort 
distance measures. 

1.4.2 Choice of Data 
The use of rare and of common characters have both been advocated by different workers. 
Comparison of these two different approaches suggests that they make little difference to the final 

result. 

The inclusion of non-variable characters in a data set does not increase the resolution of the measures 
obtained but merely rescales them. It may be argued that the resulting measures reflect the underlying 
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absolute differences more accurately. The approach may be attractive when we are able to measure 
the genetic differences between varieties more completely. 

1.5 Standardisation, Scaling, Transformation and Weighting 

1.5.1 Standardisation 
The magnitude of many of the measures mentioned in the appendix increase as the number of 
characters measured increases. Standardisation provides a method for overcoming this, and also for 
converting these measures to metrics. The following examples concentrate on the Euclidean distance 

measure [2)x; - Y; l r12 

[~ 2]1/2 
Standardised by range (Taxonomic distance) L..J; ( (x; - Y;) I range) 

[ 2 ]1/2 
Standardised by standard deviation I,, ((X; - y,) I a) 

[~ 2 ]1/2 
Average or Average Taxonomic Distance L..Jlx;- Y;) In (Reincke 1898) 

[ 2 ]1/2 
Mean Character Difference I,,(x, - Y;) I n 

Cosine a or normalised Euclidean [ [ X y, J2f 
2: ( 2)V2 ( 2)V2 L·X; 2:-Yi 

1.5.2 Scaling 
If several variables are measured so that they have different units they must either be scaled or 
weighted before proceeding with further calculations. Scaling may be by equalisation of the gross size 
of each character. by equalisation of the variability of each character or a combination of !.he two. A 
similar effect to scaling can sometimes be achieved through appropriate weighting. 

1.5.3 Transformation 
In common with many other statistical methods, maximum use can be gained from data if it is 
transformed correctly. Transformation may be valuable in providing a biologically and 
mathematically sensible form of data representation. The size of an organism may be best represented 
by its volume. Length may be better represented on a logarithmic scale. Many other forms of data 
transformation are available to aid in !.he presentation of data e.g. Fourier series and non-linear fitting. 

1.5.4 Weighting 
Except as an alternative method of scaling, weighting should be unnecessary. If characters are 
represented as closely as possible by their genotypes, appropriate weighting should result by virtue of 
the numbers of genes involved in complex phenotypic features. Some form of weighting may 
occasionally be appropriate for characters that show environmental interactions. 

1.5.5 Missing Values 
Missing data should be coded differently from the absence of a character. Providing an individual or 
a particular character does not have too many missing values calculation of !.he coefficient is carried 
out with appropriate adjustments. It is worthy of note !.hat missing data may change the properties of 
the measure or metric. 

3 3 1 ·' . 
'' 
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In applied biology it is rare to find that all of the variables or characters being studied are of the same 
type. There is usually a range of different types of variables for which different measures of 
dissimilarity are appropriate. One way around this problem is to consider each class of variable 
separately, and then to take an average (with or without weighting) of the resulting coefficients. 
Another option is to use a generalised measure. Gower has defined a general coefficient of similarity 
which is suitable for all data types. This measure may be weighted. although determining appropriate 
weights may not be straight forward. 

1. 7 Other Techniques 
Formation of a distance or similarity measure from character data is generally the first step of three. 
It is generally followed by a clustering technique and then by a form of graphical representation (see 
section 2). This is essentially an algorithmic approach. Once appropriate algorithms have been 
selected, computation proceeds to a final solution. Only one "answer" is produced. (For some 
clustering methods different solutions may sometimes be produced by changing the data order.) 
Another class of methods are those used in phylogenetic reconstruction. These methods are based on 
evolutionary assumptions which are used to search for an optimum tree. Every possible arrangement 
of tree can be considered and rated according to the evolutionary assumptions used. Thus each tree 
can be ranked to determine the "best" tree for a given set of rules. Maximum likelihood methods 
estimate the probability that a given tree gave rise to the current observed data and seem both 
reasonably robust and intuitive. Parsimonious methods seek to minimise the numbers of particular 
changes (the changes depend on the model involved). These techniques are more sensitive to 
violations of their assumptions. Investigation of the use of these techniques to study varietal 
information is clearly merited. 

1.8 Conclusion 
To get the best results, all information known should be utilised. This is important when choosing an 
appropriate scale, transformation and distance measure for an individual character, a group of similar 
characters or a range of diverse characters. Although quantitative characters can be simplified to one 
or more two state characters, information is lost, decreasing potential resolution. Where possible 
translation of phenotype scores to genotypes allows a better characterised analysis. Where this is not 
possible the exact choice of distance measure will depend on the nature of the data. Where data from 
different characters is of different types, generalised approaches like that of Gower are to be preferred, 
although appropriately weighted combinations of different measures may be made. Particular care 
should be exercised when computer packages are used as these may provide unsuitable default 
options, or lack suitable options entire! y. 
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In general clustering tools exist to allocate a sample of N objects into G groups based on the 
measurements of P variables. Clustering tools can be considered as the filling of a sandwich - the 
outer layers being on the one hand the of choice of similarity or distance measures and on the other 
hand the dendogram or output from cluster tools. 

Choice of similarity or distance measure 
Choice of clustering tool 

Interpretation of dendogram or output 

The choice of the similarity or distance measure used can be driven by the type of data (binary, 
qualitative, quantitative, mixed), the quantity of the data and the scales of measurement. 

Before employing a clustering tool it is essential to consider the objectives of the 'grouping'. Some 
primary questions ~e given below - not exhaustive. 

• Objective to seek natural grouping only? 
• Are groups/clusters of known shape sought? 
• Are known 'controls' available to mark 'groups'? 
• Are proposed clustering method appropriate to the (biological) mechanism that generated the 

data? 
• Are hierarchical 'tree/branch' methods appropriate.? 
• Are methods of density search, clumping and partitioning appropriate? 
• How many groups are desired? 
• Are overlapping groups allowable? 
• Has the data been screened for outlier values? 

2.2 Agglomerative Methods 
This class of clustering tool are usually hierarchical in form and can be influenced by a poor initial 
starting 'group'. No reallocation of objects to groups is possible which may be important if the 
identification of natural groups is the primary aim. Chaining (see below) can occur in these methods. 
Some authors have questioned some mathematical properties of these methods under transformation. 

Despite the above comments hierarchical clustering tools are extensively used - particularly as 
software is readily available to perform the computations. Listed below are a sample of hierarchical 
methods that differ in the decision rule applied when selecting existing groups to be fused together. 
Application of each of the methods outlined below are unlikely to generate exactly the same results. 
Differences between results derived from a range of methods can provide useful additional 
information about the distribution of objects within a group, the overall shape of clusters and the 
distribution of the clusters over the 'sample space'. 

2.3 Clustering Methods 
Many clustering methods have been developed over the past 30 years. Unless the 'clusters' are 
compact and regular in shape and well separated in space - it is unlikely that identical results will be 
obtained from all the methods listed below. This can be unsettling for users especially when the 
resulting clusters are very different. Some explanation of the decision rule used by the methods will 
reassure users that any differences are providing important information about the structure of the data 
- eg the distribution of objects within a group, the overall shape of clusters and the distribution of the 

;. ~' '-· 
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ciusters over the 'sample space'. Deviations from compactness or regularity or both can have marked 
effects on the resulting clusters. The detection of potentially aberrant observations is advised before 
clustering as such observations can greatly influence the resulting clusters. Application of clustering 
methods can be used to identify outliers. Removal of outliers should require that the selected distance 
measure is recalculated. 

Using many clustering methods on the same data sets and picking the one that is 'best' (in some 
sense) is not recommended. 

2.3.1 Nearest Neighbour (Single Linkage) 
Decision Rule:- Minimise the inter-group distance defined as the distance from the closest member. 
This is illustrated diagramatically for three clusters in Fig 1. Nearest Neighbour method works well 
for regular and compact natural clusters. The method can be influenced by outliers and perform poorly 
in some cases of clearly distinguishable groupings with little separation in the data space (see Fig 7.) 

2.3.2 Furthest Neighbour (Complete Linkage) 
Decision Rule:- Minimise the inter-group distance defined as the distance from the remotest member. 
This is illustrated diagramatically for three clusters in Fig 2. Furthest Neighbour method works well 
for regular and compact natural clusters. The method can be influenced by outliers. 

2.3.3 Centroid Cluster (UPGMC- unweighted pair group) 
Decision Rule:- Minimise the inter-group distance defined as the distance from group Centroid and 
proportional to the size of the groups. This is illustrated diagramatically for three clusters in Fig 3. 
UPGMC method works well for regular and compact natural clusters. Although all the data is utilised 
in the computation of the centroid - similar centroids can stem from both compact and disparate 
within cluster data. 

2.3.4 Median Cluster- Gower's Method (WPGMC- weighted pair group) 
Decision Rule:- Minimise the inter-group distance defined as the distance from group Centroid 
independent of the relative sizes of the clusters. Weighted version of Centroid Cluster (3.3 above). 
WPGMC method works well for regular and compact natural clusters. This is illustrated 
diagramatically for three clusters in Fig 4. Can be applied to different types of data. 

2.3.5 Group Average Cluster (UPGMA unweighted pair group average) 
Decision Rule:- Minimise the inter-group distance defined as the average of all paired distances based 
on all individuals with the group. This is illustrated diagramatically for three clusters in Fig 5. 
UPG:MA method works well for regular and compact natural clusters. Each observation, irrespective 
of location relative to the within group centroid, is given equal weighting when calculating the set of 
pairwise distances. 

2.3.6 Ward's Method- Orloci (error sum of squares) 
Decision Rule:- Minimises the increase in sum of squared deviations for each individual from the 
group Centroid This is illustrated diagramatically for three clusters in Fig 6. Ward's method works 
well for regular and compact natural clusters. The distribution of the within group observations 
relative to the group centroid is analogous to the familiar least squares approach used in analysis of 
variance/regression. 

Various authors have recommended that Median, Wards and Centroid methods are not suitable for 
similarity coefficients. Not all the above methods will deal equally effectively with clusters of the 
distinctive shape as shown in the artificial examples in Fig 7. 
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While users may seek self contained and compact clusters the mathematical foundations of the applied 
clustering decision rules can yield chains of points where objects are added to clusters via close 
intermediate points. This is referred to as "Chaining". Some hierarchical methods have been shown to 
be prone to this effect 

As mentioned earlier hierarchical. clustering may be appropriate when the data suggests a 'nested' 
structure for the relationships between the clusters. 

2.4 Non-Hierarchical Methods 

2.4.1 Divisive Methods. 
Many such methods have been suggested in the literature including:-

• Splinter Group Methods. 
• Association Analysis Method for binary data. 
• Automatic Interaction Detector (AID). 

This class of tool seek to divide the N objects into G groups but suffer from a similar fault as the 
hierarchical methods - that of failing to 'recover' from a poor initial grouping. 

2.4.2 Partitioning Methods 
If W is the pooled within group sum of squares and products matrix(SSP) then methods can be 
devised to partition the N objects by minimising the trace(W). Many such methods require a priori the 
number of clusters required. While theoretically a plot of trace(W) against the number of groups (or 
clusters) is expected to indicate the appropriate number of groups for a particular data set- the results 
of using such an approach in practice have been disappointing. 

2.4.3 K-Cluster Means Methods. 
This class of methods bases the clustering criterion on such statistics as:-
• traee(W) 
• detJWI 
• trace (BW"1) 

• Average Entity Stability statistic 
• Information Statistics. 

2.4.4 Density Search Methods 
This class of method seeks to identify dense and sparse portions of the total data space. 
An initial radius R is chosen and a circle drawn round each of the N object data points. Circle around 
data points that contain K or more points are referred to as "dense" points. Radius R is increased 
gradually, which will increase the number of "dense" points until the various stopping rules are met 
This approach is illustrated in Fig 8. 
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Dendograms are ways of representing object/cluster relationships visually. They are usually produced 
following hierarchical clustering based on a suitable distance/similarity measure. This tool is not 
generally applicable to non-hierarchical clustering methods or for data that is not hierarchical in 
nature. 

Dendograms are nodal systems and when viewed vertically can be considered akin to a child's mobile. 
A series of nodes suspended from "legs" which are in tum attached to "arms" passing through nodes. 
The lengths of the "arms" is such to achieve overall equilibrium and therefore is not important to the 
interpretation of the overall dendogram. Nodal position relative to the root and the length of the "legs" 
are important as they correspond to the degree of relatedness of the groups of objects/clusters. 
Dendograms, unlike a child's mobile, are not restricted to being 'hung' vertically and can equally well 
be drawn horizontally. In a similar way that a mobile is free to rotate about any node, independently of 
other nodes but retaining overall equilibrium, Dendograms can also be rotated. Lower level nodes can 
also be rotated or remain fixed. Such a feature can offer a great deal of flexibility in the way any 
dendogram is viewed. The potential application of this feature is shown in the example Fig 9. With 
only six objects the initial dendogram shows A and F at opposite sides of the visualisation whereas 
after only three rotations A and F become adjacent. As can be seen dendograms do not produce unique 
visualisations of the observations/clusters. 

A child's mobile is unlikely to remain in equilibrium if nodes are removed. Similarly nodes in 
dendograms should not be removed. The distances/similarities should first be recomputed and the 
appropriate clustering tool reapplied. 

From a users perspective there is a tendency to accept a dendogram if it produces a visualisation that 
supports our a priori expectation. The focus of dendograms is also on the objects and less on the 
clustering of the objects which are fused into clusters at differing stages. 

Several methods are proposed to give an objective assessment of the efficiency of a dendogram for 
'known' solutions - e.g. using training data sets. Dendogram efficiency can be measured as the 
minimum number of node rotations which gives the optimal match with the 'known' solution. 
Alternatively the minimum number of rotations required to achieve complete randomness. 

3. 1 Alternatives to Dendograms 
Given some of the limitations of dendograms mentioned above users are encouraged to consider a 
visual representation that focuses more on the relatedness of the formed clusters. 

Sneath and Sakal (1973) give several possibilities that can be tailored to suit individual requirements. 
Some examples, based on the same data set, are given below. 
• Contour intervals compared to the traditional dendogram. (Fig 10) 
• Contours with minimum spanning 'tree' showing cluster grouping (Fig 11) 
• First and second order distances (Fig 12) 
• 'Ball and rod' method (Fig 13) 

Other methods, such as dimension reduction techniques, can also be applied successfully particularly 
where much of the total information is contained in the first few 'dimensions'. 

4. References 
Sneath, H. A. And Sakal, R. R. (1973) Numerical Taxonomy. FreemJn and Company. San Francisco 
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The following three sections mention some of the more commonly used resemblance coefficients for 
quantitative and qualitative data. Qualitative data is considered as multistate data and as dichotomous 
or binary data. The coefficients mentioned are neither exhaustive nor are all synonyms listed. Some 
algorithms have analogues: in each section. Despite this they may not bear the same name. 
Standardization and scaling have been incorported in some cases where a particular name is 
associated with the use of a particular type of standardization or scaling. For many of the measures 
standardization is necessary as the distances increase as more characters are added. Different forms 
of standardisation are considered below. 

5.1.1 Measures for Quantitative Data 
The following are measures that have been used to study quantitative data. 

5.1.1.1 Power 
The power distance can be regarded as general form of several popular distance measures. Use of 
different constants a and b allow modification of the coefficient for different purposes. 

[ IJxi <_ yJ' r where a and bare user-defined parameters 

5.1.1.1.1 Minkowski 

A specialized case of the above, where a = Jib. As a increases, dissimilar units make a greater 
contribution. 

[ Li lxi - Yi Ia ra where a is a user-defined parameters. This measure is sometimes standardised by 

range. 

5.1.1.1.2 Euclidean or Pythagorean or Taxonomic Distance 

This is a specialized case of the Power and Minkowski metrics where a = Jib = 2. It is perhaps the 
most widely used of the distance measures and is readily visualised in two dimensions where it 
corresponds to the distance between two points. 

[Li(xj - Yi )2 r12 

5.1.1.1.3 Squared Euclidean Li(xi - Yi )2 

5.1.1.1.4 Manhattan or City Block 

This is another specialized case of the Power and Minkowski metrics where a = b = 1. This is 
another very popular metric, and for a two dimensional case can be thought of as the distance between 
two points on the X axis plus the distance between the same two points on the Y axis. 

I.Jxi -yil 
This measure is also frequently standardized by range by averaging, or by both. When averaged this 
measure is sometimes referred to as the Mean Character Difference (Cain & Harrison 1958, 
Czekanowski 1932, Haltenorth, 1937). The measure will always underestimate the true Euclidean 
difference; underestimation may be considerable wheresome differences are small and others large. 

5.1.1.1.5 Ecological 

This is like the City block measure, but has a weight of zero if xi = Yi . 
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5.1.1.2 Bhattacharyya or Chord Distance 

[L.,cxi'2 - Yi12 ) 2 J12 

5.1.1.3 Canberra 

~ jx; - Y; I ~ jx, - Y; I 
L....'(x; + y;) L....'lxd +jy;l 

5.1.1.4 Unnamed 

L·lx;- y,l 
'lx, + y,l 

5.1.1.5 Bray-Curtis 

L,jx;- y,j 
l:;(x, + Y;) 

5.1.1.6 Czekanowski 

1_ 2 I,, min(x,., Y;) 
L,(x, + y,) 

5.1.1.7 Clark or Divergence 

5.1.1.8 Chebychev 

Max lx,- y,l 
5.1.1.9 Chi-square 

5.1.1.10 Penrose Size 

5.1.1.11 Penrose Shape 

L.(x,- y,) 2 In- [l:,Cx,- y,)l nr 

5.1.1.12 Soergel 

1- l:Jx, -y,l 
l:,max(x,, y,) 



5.1.1.13 Ware and Hedges 

L(1_ min(x,,y,))/ n 
\ max(x,y,) 

5.1.1.14 Mahalanobis 
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~L,LiVJ(X;- y,)(xi- Yi)where V';i is the ithe row of the jth column of the variance

covariance manix between two populations. 

5.1.2 Measures for Qualitative Data 
Where variables are catagorical. but with more than two classes. In the explainations below m 
indicates a match. u unmatched (or mismatched). and n the total number of matches plus mismatches. 

5.1.2.1 Sneath or Simple Match Distance 

1-(m/n) 

5.1.2.2 Rogers and Tanimoto Distance 

1-(m/n+u) 

5.1.2.3< Harmann Distance 

1-(m-u/n) 

5.1.2.4 Unnamed No1 Distance 

1-(2m/ n+m) 

5.1.2.5 Unnamed No3 Distance 

1-(m-u) 

5.1.2.6 Pattern Difference 
The pattern difference can be extended to multistate characters (See below and Sackin M.J., J Gen 
Micro 122: 24 7) 

5.1.3 Measures for Dichotomous Data 
Considering the scores for two individials: 
Individual A Individual B Frequency 
+ 
+ 

Total 

+ 

+ 

a 
b 
c 
d 
n 

5.1.3.1 Simple Match & Taxonomic Distance 
The proportion of variables that show disagreement between two individuals. Although not always 
ideal, this measure may be acceptable in many situations. The Taxonomic distance is the square root 
of the simple matching distance. 

b:c (or 1_ a: d) 
5.1.3.2 ]accardDistance 
Particularly suitable where the absence of a trait does not simply relate to the degree of similarity 
between individuals ega lack of gills does not relevant when comparing make a tree to a mammal. 

339 
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5.1.3.3 Czekanowsld or Sprensen or Dice Distance 

Similar to the Jaccard algorithm, but giving extra weight to positive matches 

b + c (or 1_ 2a ) 
2a+b+c 2a+b+c 

5.1.3.4 Yule Distance 

Yule's non-metric similarity measure may be converted into a 0 - 1 scale by the transformation 
(s + 1)/2, and into a distance by subtracting the result from 1. 

be (or 1 _ _!_(ad- be+ 1)) 
ad + be 2 ad + be 

5.1.3.5 Kulczynsld No 1 

Values range from 0 to infinity. Sensible values are not obtained after a> 1/2. 

a 
b + c ' 

5.1.3.6 Kulc:.yns"-i No 2 

1 ( a a ) 
2 a+b + a+c 

5.1.3.7 Pearson's Phi 

Pearson's Phi is a non-metric similarity measure. It may be converted into a 0 - 1 scale by the 
transformation (s + 1)/2, and into a distance by subtracting the result from 1. 

ad-be 

~(a+ b)(c +d)( a+ c)(b +d) 

5.1.3.8 Russel and Rao Distance 

b + c + d (or 1_ a ) 
a+b+c+d a+b+c+d 

5.1.3.9 Anderberg 1 Distance 

2(b +c) (or 1 _ a J 
a+2(b+c) a+2(b+c) 

5.1.3.10 Anderberg 2 

1( a a d d ) 
4 a+b + a+c +b+d+ c+d 

5.1.3.11 Unnamed NoS 

ad 

~(a+ b)(a + c)(b + d)(c +d) 



5.1.3.12 Ochiai 

a 

.J(a+b)(a+c) 

5.1.3.13 Pattern Difference 
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A shape coeffieient known as the pattern coefficient has been developed to aid in the classification of 
bacterial identification. In this application a negative result may be due to sub-optimal conditions or 
be a true negative result. For a binary character the vigour is positive test results/total test results. 
The pattern difference berw~jj two individuals is calculated as: 

)(Difference in vigour2 - Match Distance2) where 

Match Distance = (a +n b)2 _(a +n c)2 

5.1.3.14 Rogers and Tanimoto 

See also below 

b + c (or 1 _ a + d J 
a+ 2(b +c)+ d a+ 2(b +c)+ d 

< 

5.1.3.15 Sneath and Sakal 

b+c ( 1 a+d ) or--------
2a +b + c+ 2d a +(b +c) I 2+ d 

5.1.3.16 Hamman 
Hamman's non-metric similarity measure may be converted into a 0- 1 scale by the transformation 
(s + 1)/2, and into a distance by subtracting the result from 1. When converted into a distance this 
measure is identical with the simple match distance. 

1_(a -b- c+ d) 
a+b+c+d 

5.1.4 General Measures 

5.1.4.1 Gower 

1 - Lfw is,) where s i is the =e and w; the weight. The scoce and weight foe different types of 
,w, 

variable are shown in Table 3: This can be expressed as a distance. 

.34,1 
~, ,-4 
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lxi- yJ 
range 

0 if Wi = 0 

1 for matches 
0 for mis-matches 
0 if Wi = 0 

1 for matches 
0 for mis-matches 
0 if Wi = 0 

Table 3 CalculaJionsfor Cowers CoefficienJ 

Wi 
0 for missing values 
1 for all other situations 

0 for negative matches 
1 for all other situations 

0 for negative matches 
1 for all other situations 

5.1.5 Sequence and Genetic Data and Measures 
Measurements of genetic data can be of two types. Those where the mesurements can be treated as 
genetic measurements and those where they must be treated essentially as phenotypic data. If 
measurements of a character can be related to different alleles at a locus assumptions consistent with 
this can be made. The nature of the data used to determine which allele(s) is (are) present does not 
affect this, although knowledge of the genetic architecture of the organism (ploidy, duplications, etc) 
is clearly important. The measurements may be of morphological characters, protein size, shape or 
charge, or information derived from the nucleic acid sequence directly. Where this is not possible 
care should be taken, particularly if the information is derived from nucleic acid data. Homologous or 
homeologous parts of the genome should be compared For example, bands of a particular size in a 
genomic digest should be treated as phenotypic data unless there is some specific reason for beleiving 
them to show homology. In this case this might be established by studies of inheritance or be 
hybridization with specific complementary probes. 
The nucleic acid sequence itself might be regarded as the most basic form of data, but even here care 
must be exercised. The genetic arcitecture of the organism(s) under study may make it difficult to 
determine appropriate comparisons for some sequences. As mentioned in the introductory section, a 
modified or new measure is often the most appropriate for particular type of data. This is particularly 
true for genetic data, and for nucleic acid and protein sequences. There is still some debate about the 
most appropriate techniques for the srudy of some forms of molecular varaition. 

5.1.5.1 Czekanowski's Mean Difference 
Czek.anowski's Mean Difference may be used for the study of genetic difference. The maximum value 
of this measure depends on the number of alleles. Czek.anowski's mean difference can also be much 
less than one for two polymorphic populations which share no alleles. 

5.1.5.2 Manhattan 
The Manhattan metric is 2 when no shared alleles are present, and can thus be adjusted to account for 
this by division by 2. This is sometimes known as the Prevosti distance. Neither can be used to take 
in to account that gene frequency change is itself dependant on gene frequencies. 

5.1.5.3 Rogers 
Rogers (1972) genetic distance is effectively the euclidean distance corrected to allow for the fact that 
for gene frequency data this would allow the distance to be between 0 and ...J2. The measure is not 
proportional to evolutionary time or the number of gene substitutions. It also suffers from the property 
that the distance can be considerably less than one even when no alleles are in common between two 
polymorphic populations. 

[~ I,<x,-y.J' J" 



5.1.5.4 Sanghivi 
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Sanghivi's distance (1969) is essentially a modification of Mahalanobis' d modified for use with 
gene frequency data. This distance is closely related to x.2• such that for two populations of size n x.2 = 
2n x the square of 

[I. (.x,- yJ2 ]1/2 
' (.x; + y,) I 2 

5.1.5.5 Bhattacharyya's Angular Transfonnation 

[ 2 Jl/2 
1_ L, f• -y, )) This takes a value of between 0 and 1 and is distributed as the root of 1/4 x.2 

2 .X;+ y, 

5.1.5.6 Other Genetic Measures 
Other important and frequently used measures include Cavalli-Sforza & Edwards (1967) Chord 
Distance, Nei (1978) unbiased genetic identity; Nei (1978) unbiased genetic distance; Nei (1972) 
genetic identity; Nei (1972) genetic distance; Nei (1978) unbiased minimum distance; Nei (1972) 
minimum distance;; Cavalli-Sforza & Edwards (1967) arc distance; Edwards (1971,1974) "E" 
distance. 
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Fig 2. Furthest Neighbour (Complete Linkage) 
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Rg 5. Group Average auster (PGGMA unweighted pair group average) 
(only saraple of lines shown) 

Fig 6. Wards Method (Or1ocl- Error Sumot Squf'lres) 
(only sample of lines shown) 
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Fig 11. Contours with minimum spanning 'tree' showing cluster grouping 
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Fig 12. First and second order distances 
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Fig 13. 'Ball and rod' method 
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