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A REVIEW OF METHODS FOR CLUSTER ANALYSIS OF MARKER DATA 

1. Introduction 

Unambiguous identification of plant cultivars and of their genetic interrelation is of 
relevance in DUS testing and in the identification of essentially derived (ED) varieties. 
Various molecular techniques are now available for varietal identification, which are more 
powerful than traditional morphological comparisons and isozyme techniques (Cooke RJ, 
1995). For a recent review comparing polymerase chain reaction (PCR) based DNA profiling 
methods with the well-established restriction fragment length polymorphism (RFLP) 
technique see Morell et al. (1995). Statistical analysis of DNA profile data usually consists of 
three steps: (i) Scoring the profile; (ii) Calculating genetic distances; (iii) Summarizing 
genetic relationships, e.g. as a dendrogram. Dendrograms are useful for studying the genetic 
relationships among crop cultivars or inbred lines. The purpose of this paper is to describe the 
computational steps for generating dendrograms from marker data . 

. 
The type of distance measure suitable for analysing a given data set depends on the data. 

In the following we will therefore describe the type of data arising from DNA profiles and 
how to score such profiles (Section 2). Then, a brief account is given of some distance and 
similarity measures in widespread use (Section 3). A short description of some common 
clustering algorithms is presented in section 4. 

2. Type and scale of marker data 

Various DNA profiling methods are available such as RFLPs and PCR based DNA 
profiling (RAPD = random amplification of polymorphic DNA, STS = sequence-tagged sites 
analysis, AFLPs ). Any of these methods yields a DNA profile consisting of a specific banding 
pattern on an electrophoretic gel. Two basic types of pattern can be distinguished: banding 
data and allelic data. Banding data are easier to obtain in practice, while allelic data (as 
derived from banding data) are more informative. 

2.1 Banding data 

When the banding pattern is complex and the genotype cannot be determined directly, it 
is common to convert the banding pattern by assigning a series of 1 s and Os representing band 
presence or absence, respectively. The resulting array of 1 s and Os can be used to calculate 
(genetic) similarities or distances. 
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Table 1 : Example of scores for banding data of two genotypes x andy (9 band positions) 

Band position 

Genotype x 
y 

abcdefghi 

0 0 1 1 0 1 1 0. 1 
11 o 1111 o·1 

The cu1tivars or lines to be compared may be thought of as populations. The number of 
individuals scored per population depends on the degree of genetic homogeneity within 
populations. For self-fertilized varieties, which are homogeneous, for homozygous inbred 
lines, and for clonal varieties, one individual may be taken to represent the whole population. 
By contrast, a large number of plants (100 or more) may have to be sampled from 
heterogeneous populations of allogamous crops. In the latter case banding patterns are 
expected to vary among individuals of the population. Banding data of a sample of plants 
from heterogeneous populations may be summarized by computing the band frequency at 
each banding position, where the frequency may take any value between zero and unity (Table 
2). For a sample from a completely homogeneous population, the frequencies would be either 
0 or 1 at a position, leading to the same data as for each individual plant. In the sequel, 
banding data from a single plant (that represents a homogeneous population) will be referred 
to as binary banding data. Frequencies derived from banding diita of a sample of plants from a 
heterogeneous population are referred to as band frequency data. 

Table 2: Example for computing band frequency data from binary band data 

Band position 
Plant a b c d 
no. 
1 0 0 1 0 
2 0 1 1 0 
3 1 1 0 1 
4 1 1 0 0 

0.5 0.75 0.5 0.25 
band frequencies 

2.2 Allelic data 

Allelic data may be obtained, when the marker genotype can be determined from the 
banding pattern (usually by RFLPs or isozymes, which are codominant). For example, with 
RFLP analysis, each probe-enzyme combination may be considered to be a RFLP locus, and 
each unique banding pattern a RFLP variant (Melchinger et al., 1991; Bernardo, 1993). 
Provided the mode of inheritance is knoWn and each banding pattern can be assigned a marker 
genotype, allele frequencies for marker loci can be calculated (see Appendix) to compute 
genetic distances between populations of individuals based on differences in allele frequencies 
(Melchinger, 1993). When the populations are homozygous and homogeneous as for inbred 
lines, the frequencies for a particular allele are either zero or unity. 
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Based on either banding data or allelic data, distances and similarity measures can be 
computed. Such measures may be viewed as convenient means of data reduction, and they 
need not involve any genetic concept (Weir, 1996: 190). Some ofthe measures for allelic data 
were designed based on genetic models specifying the processes underlying the divergence of 
populations. It should be checked, whether or not these assumptions are met in practice. 

3.1 Binary banding data 

Sneath and Sokal (1973) list four classes of similarity measures: (i) distance 
coefficients, (ii) association coefficients, (iii) correlation coefficients, and (iv) probabilistic 
similarity coefficients. Most measures relevant for the analysis of binary banding data fall 
within the class of association measures, which are based on qualitative data (multistate or 
two-state). Occasionally association measures turn out to be special cases of distance 
coefficients or correlation coefficients. For a comprehensive overview see Sneath and Sokal 
(1973), Clifford and Stephenson (1975), and Gower (1985). In the following, we will give a 
few measures which we found to be frequently used in genetical studies. The data of two 
genotypes can be arranged as 2 x 2 frequency table 

X 

0 I 

0 noo not 
y 

I n10 nu 

From this basic table the following frequencies can be computed (Armstrong et al., undated) 

n00 = number of band positions SCOred 0 for X and 0 for y 

n10 =number of band positions scored I for x and 0 for y 

no 1 = number of band positions scored 0 for x and 1 for y 

n11 = nxy =number ofband positions scored I for x and I for y 

nx =not + n11 =number of bands present in x 

ny = n10 + n11 =number ofbands present iny 

mxy = noo + nil =number of matches 

n = noo + n 10 + no 1 + n11 = number of band positions 

The most important distinction is between measures that ignore negative matches (0, 0 
comparisons) and measures that do not. It is debatable whether or not exclusion of negative 
matches is useful in the context of DNA profiles. Take the following simple example with 
three genotypes x, y and z: 
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Table 3: Example of scores for banding data of three genotypes x, y and z ( 4 band positions) 

Band position 

Genotype x 
y 
z 

a b c d 

0 0 1 1 
1 1 1 1 
0 1 1 1 

In a way, z is as similar to x as it is toy, because in both comparisons, three of four 
comparisons are concordant. The only difference is that in thez-x comparison, only two of the 
three concordant observations are positive matches, while in the z-y comparisons all are 
positive matches. On the other hand, for a negative match to be observable, the corresponding 
band must be observed for at least one of the other genotypes. Thus, any similarity measure 
which takes into account negative matches, will depend on the particular set of genotypes 
included in the study, which is a point in favor of measures ignoring negative matches. 
Moreover, there are several ways in which a genotype may loose a band/DNA fragment, so it 
may be argued that basing similarity on the mutual absence of a character is improper 
(Vierling and Nguyen, 1992). 

The similarity measures (s) given here take values in the range from zero to unity. For 
identical genotypes s = 1, while for completely distinct measures s = 0. The distance measure 
corresponding to these similarity measures may be computed as d = 1 - s. 

3.1.1 Measures that ignore negative matches 

(1) Nei and Li (1979): 

This is probably the most popular similarity measure in genetic analyses. It is equivalent 
to the Dice coefficient (Sneath and Sokal, 1973: 131) and assesses the proportion of bands 
shared by two genotypes x and y. Under certain statistical assumptions, NLxy may be 

employed to derive an estimate of the mean number of nucleotide substitutions per nucleotide 
site (Nei and Li, 1979), which is a useful parameter in evolutionary studies. The underlying 
assumptions may be realistic in natural populations, but they are probably doubtful in plant 
breeding. If the assumptions are violated, there is no longer a direct biological interpretation 
(Swofford and Olsen, 1990: 435). If the computations are exclusively based on single-banded 
RFLP patterns, then NLxy is equal to Rogers distance (see below) (Melchinger, 1993). 

(2) Jaccard (Sneath and Sokal, 1973: 131): 

NLxy is the same as lxy, except that positive matches carry double weight. It has been 

suggested (Link et al., 1995) that NLxy is more appropriate for RFLP data, while lxy should 

3 1 , 
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be used with RAPD data. The reasoning is as follows: RAPD markers either produce a band 
in a certain position or the band is absent. Thus, one band position usually corresponds to one 
marker locus. By contrast, RFLPs produce fragments of varying lengths for different alleles. 
For two cultivars differing at a marker locus, fragments are produced for both alleles, but they 
differ in their position on the gel. Hence, a locus is represented by two band positions. When 
the cultivars are identical, however, the locus is manifest in only one band position for the 
pairwise comparison. Thus, matches should receive double weight compared to mismatches, 
as in NLxy. This reasoning implies that RAPDs show no length polymorphisms and that each 

RFLP allele produces only one band on the gel. Both of these assumptions are idealizations, 
but they may be reasonable approximations in practice. 

It should be remarked that there is a monotonic relationship between the coefficients by Nei 
and Li and by Jaccard: 

Both measures will give identical rank orders of similarities. With some clustering 
methods (single linkage, complete linkage, see below) the dendrograms will be essentially the 
same with both measures (Digby and Kempton, 1987: 129). J:ILxy is non-metric [ie. they do 

not satisfy the triangular inequality dxy ~ dxz + dyz• where dxy is the distance between x and 

y], while Jxy is metric, which is a point in favor of the latter (Sneath and Sokal (1973:131)). 

3.1.2 Measures, which treat positive and negative matches alike 

These measures are symmetric in noo and n11· i.e. the formula stays the same when noo 

and n11 are exchanged. Only the most popular measure is given here. For other measures see 

Sneath and Sokal (1973) and Clifford and Stephenson (1975). 

(3) Simple Matching (Sneath and Sokal, 1973: 132) 

SMxy = mxyln = (n11 + noo)ln 

The simple matching coefficient measures the proportion of positive and negative 
matches. In order to compare SMxy with measures that ignore negative matches, we computed 

some similarities for the example in Table 3. SMxy yields the same similarity/distance for the 

pairs x-z and y-z, while measures ignoring negative matches such as Jxy and NLxy indicate a 

larger similarity betweeny and z. 

Jxz= 0.67 

Jyz= 0.75 

NLxz=0.80 

NLyz=0.86 

SM~z=0.75 

SMyz=0.75 
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3.2 Allelic frequency data and band frequency data 

In the following Xi and Yi will denote the :frequencies of allele i at a given locus for 

populations x andy, respectively. Alternatively, Xi and Yi may denote the band :frequency at 

band position i, when banding data are used. 

(1) Euclidean distance 

The :frequencies Xi and Yi can be viewed as coordinates of points in a multidimensional 

space. The geometric distance may be interpreted as distance between populations x andy. 

When allelic data :from several loCi are available, the distances for individual loci may 
be averaged. Exy takes a value between 0 and ...J2. A standardization to values between 0 and 1 

leads to Rogers' distance (Nei, 1987: 211) 

In the important case that x and y are inbred lines and allelic data are used, Rogers' 
distance (RDxy) equals the percentage of loci which differ between lines x and y. It's 

expectation is related to the coefficient of coancestry (Melchinger et al., 1991). The Rogers 
distance has the following deficiency: When the two populations are both polymorphic but 
share no common alleles, this measure can become much smaller than unity even if the 
populations have entirely different sets of alleles (N ei, 1987: 209). 

(2) Nei's standard genetic distance 

Nei's measure is intended for allelic data. When no allelic information is available, it 
may be computed :from band :frequency data. If this is done, however, the measure does not 
have the genetic interpretation as if computed :from allelic data. The normalized identity of 
genes or simply genetic identity is given by 

wherejxy = LxiYi• jx = L.x/2·, jy = r.n2 and Jx, Jy and Jxy are the averages ofjx,jy andjxy 

over all scored loci. lxy is 1 when the two populations have identical gene :frequencies over all 

loci and is 0 when they share no alleles. Because of this property, lxy has been used for 

measuring the extent of genetic similarity between populations. The quantity Dxy = -ln(lxy) is 

the standard genetic distance. Under the assumption that the rate of gene substitution per 
locus is uniform across both loci and lineages and some other assumptions, it is an estimator 
for the number of codon differences per locus between two populations x andy (Nei, 1987: 
219; Nei, 1972). While lxy ranges :from zero to unity, Dxy varies between zero and infinity. 

3 1 3 
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Loarce et al. (1996) computed the genetic identity based on band frequencies of RAPO 
fragments from bulked DNA samples of two rye cultivars. O'Donoughue et al. (1994) 
computed Dxy for band frequencies from RFLPs in oats. When computed from band 

frequency data, Dxy probably does not generally allow the interpretation as a measure of the 

number of codon differences, though it is a valid descriptive distance measure. 

Nei's distance has been critizised because it violates the triangular inequality. Both the 
distances by Nei and by Rogers (as well as the Euclidian distance) are heavily influenced by 
within-population heterozygosity. A measure, which does not show this undesirable property, 
is the arc distance of Cavalli-Sforza (Swofford and Olsen, 1990:434). 

(3) Cavalli-Sforza 

where L is the number of loci and 9= cos-1 r.t.f(x;yi) 

4. Clustering methods 

Based on a matrix of pairwise distances, a cluster analysis may be performed, usually 
producing a tree or dendrogram, which represents the relationship among cultivars. For inbred 
or clonal varieties that exhibit little genetic variation within the taxon, production of a 
dendrogram often completes the analysis. For outcrossing varieties further analysis is 
appropriate and may be essential to identify varieties (Morell et al., 1995). There is a host of 
clustering techniques (not all require a distance matrix), and, unfortunately, different methods 
may yield different groupings (Blackith and Reyment, 1971: 278). Clustering methods, 
therefore, do not lead to purely objective and stable classifications. Rather they should be seen 
as tools for data exploration (Dunn and Everitt, 1982: 104). To begin with, we give the 
following citation, which highlightens the problem of choosing the 'right' clustering method: 
"... the subjectiveness of the choice of clustering procedures stems essentially from the 
impossibility of defining a cluster on other than arbitrary terms (C.R. Rao, 1952; cited in 
Blackith and Reyment, 1971: 284)". 

Many clustering procedures were developed by and for taxonomists and evolutionists, 
who are often interested in recovering the true phylogenetic relationship among organisms. 
There are a number of methods, by which a phylogenetic tree is constructed by considering 
various possible ways of evolution, following certain rules and choosing the best possible tree 
(parsimony methods, maximum likelihood methods). An underlying assumption is that 
present-day diversity of organisms is the result of a branching evolutionary tree. A 
phylogenetic tree constructed by these methods is often called a cladogram. Two popular 
software packages implementing various phylogenetic methods are P AUP (by David 
Swofford, National Museum of National History, Washington D.C.) and PHYLIP (by Joe 
Felsenstein, University of Washington). For an introduction to phylogenetic methods see 
Felsenstein (1982), Swofford and Olsen (1990), Pankhurst (1991: 68), and Weir (1996). 
Often, however, classifications are intended mainly to describe the (genetic) resemblence of 
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present-day organisms. Such classifications are called phenograms. Nei (1987: 291-292) 
argues that the assumptions required for cladistic methods are not always satisfied with 
molecular data. Backeljau et al. (1995) discuss conceptual problems limiting the reliability of 
RADP data in parsimony analyses. Swofford and Olsen (1990) discourage the use restriction
fragment data for input to phylogenetic analysis, primarily because these data violate the 
crucial assumption of independence. Many of the cladistic methods require data on nucleic 
acid sequences or protein sequences. The phylogenetic approach is useful in the study of 
natural populations and of interspecific relationships (Song et al., 1990; van de Ven et al., 
1993; Monte et al., 1993), where forces of evolution are a dominating factor, whereas 
intraspecific relationships among crop cultivars and lines seem better suited for phenetic 
methods. Relationship among crop cultivars are often quite complicated due to artificial 
crosses among all kinds of parents, so the 'phylogeny' in this context is difficult to visualize. It 
is probably not similar to a nice hierarchical tree diagram. All we can hope for is that a 
dendrogram gives a reasonable grouping based on today's genetic similarities. The temptation 
to read all dendrograms as a phylogeny is one of the potential abuses. Here, we will consider 
the phenetic approach only. 

4.1 The UPGMA method 

Various algorithms are available for phenetic classification but the UPGMA 
(Unweighted Pair-Group Method using Arithmetic averages) method is the most commonly 
used. This method is described first and then contrasted with two other common methods: 
single linkage and complete linkage. UPGMA is based on the matrix of pairwise genetic 
distances. Suppose there are four cultivars. Let the matrix of distances be given by 

cultivar 
1 2 3 4 

1 0 
2 d12 0 

cultivar 3 d13 d23 Q 

4 d14 d24 d34 0 

where dxy is the distance between x and y. Clustering starts from the cultivars with the 

smallest distance. More distant cultivars are then gradually added to the cluster. If d34 is the 

shortest distance, cultivars 3 and 4 are clustered with a branching point located at distance 
d34· Cultivars 3 and 4 are then combined into a cluster (34). New distances between this 

cluster and the other clusters (single cultivars up to this point) are calculated: 

cluster 

1 
1 0 

cluster 
2 

2 d12 0 

(34) 

(34) d1(34) d2(34) 0 

where dl(34) = (d13 + d14)/2 and d2(34) = (d23 + d24)/2. Next, the objects with the smallest 

distance are clustered. If, e.g., this is d2(34)• we join 2 and (34) with a branching point at 

3 1 5 
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distance d2(34} At the last step, cultivar I is joined with (234) at a branching point di(234) = 

(di2 + d13 + di4)13. The following hypothetical data set is employed to demonstrate the 

method. 

Table 4: Hypothetical banding data for genotypes A to D (IO band positions) 

Band position 
a b c d e f g h i j 

Genotype 
A 1 1 1 0 1 1 1 0 1 
B 0 1 0 1 1 1 1 1 0 0 
c 0 1 1 1 1 0 1 0 1 0 
D 1 1 0 1 1 0 0 1 1 

From these data, matrices of Dice similarities (NLxy) and distances (I - NLxy) are computed. 

Dice similarity NLxy: 

A 
B 
c 
D 

A 
1.00 
0.71 
0.57 
0.80 

B 

1.00 
0.67 
0.46 

Dice distance 1 - NLxy: 

A 
B 
c 
D 

A 
0 

0.29 
0.43 
0.20 

B 

0 
0.33 
0.54 

c 

1.00 
0.62 

c 

0 
0.38 

D 

1.00 

D 

0 

The shortest distance is dAD· so A and D are fused into one cluster. After the first 

clustering cycle there are three clusters: (AD), Band C. For these, a new distance matrix is 
computed. The distance dBC (= 0.33) does not involve the new cluster (AD) and need not be 

re-computed. The new distance dB(AD) is computed as the average of the distances between B 

and members of the cluster (AD): 

dB(AD) =(dAB+ dBn)/2 = (0.29 + 0.54)/2- 0.42 and likewise 

dc(ADJ = (dAc+ dcn)l2 = (0.43 + 0.38)/2- 0.41 



Dice distance 1 - NLxy after 1st cycle: 

B 
c 

(AD) 

B 
0 

0.33 
0.42 

c 

0 
0.41 

(AD) 

0 
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Next, Band Care grouped into one cluster, since dBc = 0.33 is the shortest distance. 

The last step is to fuse clusters (AD) and (BC). The average distance between these two 
blusters is the average of all pairwise distances, where one individual is from (AD) and the 
other from (BC): 

d(AD)(BC) =(dAB+ dAC + dBD + dcD)/4 = (0.29 + 0.43 + 0.54 + 0.38)/4 = 0.41 

The outcome of this clustering process is graphically displayed in a dendrogram. The scale 
above the dendrogram indicates at which distance (similarity) clusters were fused. 

1 
0 

0.41 0.33 
0.59 0.67 

0.2 
0.8 

0 (distance) 
1 (similarity) 

A 
D 
B 
c 

A few remarks clarifying the acronym UPGMA are in order. The method is an average 
linkage method, i.e. an average similarity or dissimilarity between candidate cultivars/clusters 
is computed at each cycle. UPGMA employs the arithmetic average. Alternatively, the 
socalled centroid can be computed (UPGMC). Average linkage may be contrasted to sinjjle 
linkage/nearest neighbor methods (distance computed for the two closest members of 
candidate clusters) and complete linkajje/furthest neighbor methods (distance computed for 
the two furthest members of candidate clusters). 

Another aspect is that of weighted vs. unweighted clustering. In UPGMA, being an 
unweighted method, all cultivars in a cluster are weighted equally when computing a distance 
to a new candidate. By contrast, the Weighted Pair-Group Method using Arithmetic averages 
(WPGMA) weights distances in favor of the most recent arrival within a cluster. Finally, 
UPGMA is a pair-group method, i.e. the dendrogram is restricted to bifurcations, while 
variable-group methods allow multiple furcations. The former are easier to program, while the 
latter take into account that differences among potential clustering candidates may be too 
small as to warrant separate furcations. 

3 17 
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As for average linkage, A and D are fused first, but the new distance matrix is computed 
differently. The single linkage distance dB(AD) is the shortest distance between B and 

members of (AD), i.e. 

dB(AD) =min( dAB• dBD) = min(0.29, 0.54) = 0.29 and similarly 

dc(AD) = min(dAC· dcD) = min(0.43, 0.38) = 0.38 

Dice distance 1 - NLxy after 1st cycle: 

B 
c 

(AD) 

B 
0 

0.33 
0.29 

c 

0 
0.38 

(AD) 

0 

In the next cycle, (AD) and Bare grouped into one cluster, since dB(AD) = 0.29 is the 

shortest distance. We see here an effect known as "chaining", i.e. clusters formed at one step 
are likely to be involved in the next clustering step. Finally, we compute 

de(ABD) = min(dAe, dBe, den)= min(0.43, 0.33, 0.38) = 0.33 

1 0.33 0.29 0.20 0 (distance) 
L..p ___________ o_.~.._'J __ 9.._·7_1 __ ....... 9·_so_~J (similarity) 

A .__ ___ D 

B 
~--------- c 

4.3 Complete linkage (furthest neighbor) 

As with average linkage and single linkage, A and D are fused in the first step. The 
complete linkage distance dB(AD) is the largest distance between Band members of(AD), i.e. 

dB(AD) = max(dAB· dBD) = max(0.29, 0.54) = 0.54 

and similarly 

de(AD) = max(dAe, den)= max(0.43, 0.38) = 0.43 



Dice distance 1 - NLxy after 1st cycle: 

B 
c 

(AD) 

B 
0 

0.33 
0.54 

c 

0 
0.43 

(AD) 

0 

BMT/4/7 Rev. 2 
page 13 3 1 9 

Next, B and C are clustered, because dBC is the shortest distance. The complete linkage 

distance between (AD) and (BC) is the maximum of all pairwise distances, where one 
individual is from (AD) and the other from (BC): 

d(AD)(BC) = max(dAB· dAC. dBD· dcD) = max(0.29, 0.43, 0.54, 0.38) = 0.54 

1 
0 

4.4 Other methods 

0.54 
0.46 

0.33 
0.67 

0.20 
0.80 

0 (distance) 
1 (similarity) 

A 
D 
B 

~---------------- c 

UPGMA, single linkage and complete linkage have four important properties, 
abbreviated under the acronym SAHN (Sneath and Sokal, 1973: 214; Rohlf, 1994: 8-21), 
which they share with a large number of other methods: 

(1) Sequential (S): A recursive sequence of operations is applied to arrive at the final 
partition. By contrast, simultaneous methods, such as ordination techniques (e.g. principal 
component and principal coordinate analysis, multidimensional scaling), involve one single 
nonrecursive step yielding the fmal arrangement of cultivars. 

(2) Agglomerative (A): Starting with each cultivar as a separate set, cultivars are 
sucessively grouped, arriving eventually at a single set containing all cultivars. By contrast, 
divisive methods start out with all cultivars in on single set, subdividing this into subsets. 

(3) Hierarcbic (H): The number of subsets is reduced at every step, thus creating a 
taxonomic hierarchy. Any hierarchy can be drawn as a rooted tree or dendrogram. 
Nonhierarchical techniques include various ordination methods, in which cultivars are 
projected into two- or three-dimensional space. Nonhierarchical graphs among cultivars are 
not rooted, i.e. they do not have a beginning from which branches diverge (e.g. minimum 
spanning trees). 

(4) Nonoverlapping (N): A cultivar belonging to one clustering set may not belong to 
any other set. If the clustering method is hierarchical this means that the classification must be 
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nested. In overla,ppin~ methods, cultivars are allowed to be assigned to more than tWo 
clusters. If, for example, the parents of a hybrid are in two different clusters, then the clusters 
might be considered to overlap, with the hybrid as an object which belongs to both clusters 
(Pankhurst, 1991: 67). 

A very popular SAHN technique not mentioned so far is the ~ method. It fuses 
subsequent entities such that the sum of squared Euclidian distances within a cluster increases 
by the smallest amount (Clifford and Stephenson, 1975: 113). 

4.5 Choice of clustering method 

When faced with a set of data the question arises as to the choice of clustering method. 
One approach is to try different methods and see to what extend they agree. Broad agreement 
among different classifications of the same objects is expected if a natural grouping really 
exists and if the classifications reflect the true associations (Digby and Kempton, 1987). 

Summarizing empirical results on hierarchical methods, Everitt and Dunn (1982: 87) state that 
(a) no single method is best in every situation 
(b) the mathematically respectable single linkage is, in most cases, the least successful for the 
data used (mainly due to the "chaining" effect), and 
(c) group average clustering and the Ward method do fairly well, overall. 

In a study with maize inbreds Mumm and Dudley (1994) compared (i) single linkage 
(ii) UPGMA (iii) Unweighted Pair Group Method Using Centroids (UPGMC) (iv) complete 
linkage (v) Ward. UPGMA (based on Jaccard coefficient) showed grouping most consistent 
with pedigree data. Wilkie et al. (1993) employed (i) single linkage, (ii) complete linkage and 
(iii) UPGMA based on Rogers' distance to study taxonomic relationships within the genus 
Allium. Similar results were obtained with all methods. 

Jain and Dubes, (1988; cited in Mumm et al. 1994) list three types of validation for cluster 
analyses, which are useful in practice: 
- External (compare distance matrix to external information not used in clustering, e.g. 
pedigree relationships) 
- Internal ("cophenic" correlation between original distance matrix and pairwise distances 
implied by the phenogram; assesses the degree to which original distances are preserved 
through the clustering process) 
-Relative (compare agreement of different classifications). 
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To give an example for deriving allele frequencies and band frequencies from banding 
patterns, consider a monomeric single-locus enzyme showing triallelic variation in a 
crosspollinating population of a diploid species. Each allele produces a polypeptide chain, 
leading to an enzyme. The enzyme from all three alleles are functionally equivalent 
(isozymes), they only differ in the polypeptide chain size, shape, and charge, and hence in 
their movement on an electrophoretic gel. Thus, for each allele there is a band position on the 
gel. The banding pattern of a sample of 1 0 plants from a given population might look as 
follows: 

Table A: Banding patterns from a hypothetical isozyme system 

band 
position 

1 

2 

3 

Genotype 

Individuals 

23 33 13 12 33 12 33 11 33 13 

band 
frequency 

0.5 

0.3 

0.7 

Individual ft is heterozygous, showing bands in positions 2 and 3. It may be scored 

"23". By contrast, !7 is homozygous with only one band in position 3. Thus, it is scored "33". 

The other individuals are scored in a similar fashion. To obtain the frequency of allele 1 in the 
sample, simply count the number of 1 's on the row of scores and divide this count by twice the 
number of sampled individuals. In the example, the frequency is 6/20 = 0.30. 

J\llele allele 

1 

2 

3 

frequency 

XI= 0.30 

X2 = 0.15 

X3 = 0.55 

J\ simpler, but less informative, analysis of the banding pattern is obtained by 
computing band frequencies (see Table J\). Note that in this example the rank order of band 
frequencies is the same as that for allele ~equencies. 

When the population is homogeneous and homozygous (e.g. inbred lines), the band and 
allele frequencies at a given band position will be either 1 or 0. Finally, it is noted that allelic 
analysis becomes more complicated with polyploids. With enzymes, further difficulties arise, 
when they are polymeric and/or goverened by multiple loci. 
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A problem with the interpretation of banding patterns is the treatment of monomorphic 
bands, i.e. of bands, which are common to all genotypes. The following example of five 
genotypes with four monomorphic band positions and a total of eight band positions (Table 
B) is due to Dr. W. Link (University ofGottingen, Germany; also see Link et al., 1995). 

Table B: Hypothetical banding pattern offive genotypes (A, B, e, D, E) with monomorphic 
bands 

Genotype 

A B c D E band position 

a 
b 
c 
d 
e 
f 
g 
h 

From this banding pattern the Jaccard coefficient may be computed with monomorphic bands 
included. Consider similarities between A and B and between e and D: 

JeD= 516 = o.s3 

If, by contrast, we ignore monomorphic bands, the similarities are 

JAB= 2/4 = 0.50 JeD= 112 = o.5o 

Firstly, the similarity is numerically larger when monomorphic bands are included. 
Secondly, in this example similarities JAB and JeD are the same when monomorphic bands 

are excluded, whereas with monomorphic bands the similarity between genotypes e and D is 
larger than that between A and B. The example shows that it does make a difference whether 
or not monomorphic bands are included. It is not easy to decide which of the two strategies is 
preferable. Also, which bands are interpreted as monomorphic, depends on the genotypes 
included. Had we included a sixth genotype F with missing bands in positions e to h, all band 
positions would have been heteromorphic. 

[End of document] 


