

Disclaimer: unless otherwise agreed by the Council of UPOV, only documents that have been adopted by the Council of UPOV and that have not been superseded can represent UPOV policies or guidance.

This document has been scanned from a paper copy and may have some discrepancies from the original document.

Avertissement: sauf si le Conseil de l'UPOV en décide autrement, seuls les documents adoptés par le Conseil de l'UPOV n'ayant pas été remplacés peuvent représenter les principes ou les orientations de l'UPOV.

Ce document a été numérisé à partir d'une copie papier et peut contenir des différences avec le document original.

Allgemeiner Haftungsausschluß: Sofern nicht anders vom Rat der UPOV vereinbart, geben nur Dokumente, die vom Rat der UPOV angenommen und nicht ersetzt wurden, Grundsätze oder eine Anleitung der UPOV wieder.

Dieses Dokument wurde von einer Papierkopie gescannt und könnte Abweichungen vom Originaldokument aufweisen.

Descargo de responsabilidad: salvo que el Consejo de la UPOV decida de otro modo, solo se considerarán documentos de políticas u orientaciones de la UPOV los que hayan sido aprobados por el Consejo de la UPOV y no hayan sido reemplazados.

Este documento ha sido escaneado a partir de una copia en papel y puede que existan divergencias en relación con el documento original.

BMT/3/10 ORIGINAL : English DATE : August 30, 1995

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS

GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA-PROFILING IN PARTICULAR

Third Session Wageningen, Netherlands, September 19 to 21, 1995

EVALUATION OF THE POTENTIAL OF RFLPs FOR THE STUDY OF DISTINCTNESS, UNIFORMITY AND STABILITY IN SUNFLOWER

Document prepared by experts from France

Evaluation of the potential of RFLPs for the study of distinctness, uniformity and stability in sunflower

Y. X. ZHANG

GEVES, Le Magneraud, laboratoire de biochimie, BP52, 17700 SURGERES, France

Introduction

The GEVES (Groupe d'Etude et de Contrôle des Variétés et des Semences) is interested and implicated in the development of DNA profiling techniques for potential use in DUS testing of plant varieties, from several years. One of the research programs conducted by GEVES was the evaluation of the potentials of RFLP markers for distinctness and uniformity testing in sunflower.

Sunflower is a very important oil-seed production crop in France. Every year, there are more than one hundred of new hybrids applied for registration on the French list and new lines studied for plant breeder's rights. With this increasing number of new varieties and inbred lines, often selected from the similar genetic resources, distinction by the usual morphophysiological characters is reduced. Recently, RFLPs were reported to be promising molecular markers for the assessment of genetic variability among sunflower inbred lines (Berry et al., 1994; Gentzbittel et al., 1994; Zhang et al., 1995). Here we present our results on the interline variability (Distinctness) and intraline variability (Uniformity and Stability) obtained from RFLP analysis in sunflower.

Materials and methods

The study of interline variability was carried out on a set of 46 inbred lines of sunflower (public and protected lines), which represent the whole morphophysiological variability observed among the sunflower inbred lines maintained in the French reference collection in GEVES for DUS testing. Among these lines, several pairs are very close or not differentiated by morphological characters. For reason of simplicity and confidentiality, the lines were coded from number 1 to 46; lines 1 to 25 are maintainer (M) lines and lines 26 to 46 are restorer (R) lines. The leaves used for DNA isolation were collected from 5 plants per inbred line and bulked for each line.

To evaluate the variability within lines, 4 inbred lines were chosen for their importance in hybrid variety breeding : HA89, RHA266, CX and PAC2. For each line, 10 to 15 plants were analyzed by RFLPs. The leaves were harvested separately for each plant of the same line.

The methods used for DNA isolation and for RFLP analysis in this study were previously described (Gentzbittel et al., 1994). RFLP profiles observed in autoradiographs were scored visually. The presence or absence of a band in a gel lane was coded by 1 or 0 respectively.

Relationships among the sunflower inbred lines were studied by the estimation of Nei's similarity index F (Nei and Li, 1979) as well as Nei's distance d, expressed as the mean number of nucleotide substitutions per nucleotide site using the computer program developed by Gentzbittel and Nicolas (1990). A UPGMA dendrogram (Sneath and Sokal, 1973) was also constructed, based on the RFLP distances.

All the clones used as probes in our studies were prescreened and have detected polymorphism among sunflower inbred lines (Gentzbittel et al. 1994). The criteria of the choice of these clones were (1) genome coverage, (2) hybridization quality and (3) polymorphic content.

Results

1. Interline variability detected by RFLPs

Genetic variation among the 46 inbred lines of sunflower was assessed with 42 cDNA clones, combined with *Hin*dIII or *Eco*RI. The 42 probe-enzyme combinations produced a total of 203 fragments and 246 profiles across the 46 inbred lines of sunflower, corresponding an average of 4.8 fragments and 5.8 profiles per probe-enzyme combination. The number of RFLP profiles produced by each probe-enzyme combination ranged from 2 to 17; 62% of probe-enzyme combinations generated 2 to 5 profiles. The average gene diversity (H) (Nei, 1987) was 0.63 (S.E. = 0.83).

Nei and Li's similarity index F as well as the genetic distance d, calculated for the 1035 possible pairwise comparisons between the 46 sunflower inbred lines, are presented in Table 1. The F values ranged from 0.43 (for lines 4 and 31) to 0.98 (for lines 1 and 2), with an average of 0.63. Out of the 1035 possible pairwise combinations, 19 pairs of lines (1.84 %) had a F value more than 0.80; 7 pairs of lines (0.68 %) had a F value more than 0.90. The estimates of the distance d varied from 0.01 to 0.50 (Table 1).

Based on the RFLP distances estimated, an UPGMA dendrogram showing the relationships between the 46 inbred lines of sunflower was constructed (Fig. 1). Two main groups can be observed on the dendrogram: on the top a group of the R lines and on the bottom a group of M lines and there are several subgroups among each principal group. However, four R lines, 26, 38, 40 and 42 have been classed among the M lines. Likewise, two M lines, 5 and 13, have been classed among the R lines. The line 7 has been located out side the two main clusters. On the dendrogram, one can observe a triplet (lines 1, 2 and 18) and four pairs (lines 3 and 4, lines 29 and 34, lines 37 and 39, and lines 28 and 31) of lines which were very close and had a genetic distance less than 0.05 between them (Table 1). At morphophysiological level, lines 1, 2 and 18 can not be distinct; likewise for lines 29 and 34. Line 3 differentiated from line 4 only by one character - leaves denture. Lines 37 and 39 shared a common parent; likewise for the pair of lines 28 and 31. However, the two pairs of lines are declared distinct by morphophysiological characters.

2. Intraline variability of sunflower inbred lines revealed by RFLP

Evaluation of the intraline variation in four inbred lines of sunflower was performed with 30 probes, combined with *Hin*dIII or *Eco*RI. Ten plants for RHA266, 13 for CX, 14 for PAC2

and 15 for HA89 were studied. Evaluation of the variation within each line was based on the comparison of the fragment profiles revealed by each probe-enzyme combination. Table 2 shows the results from the comparison.

In line HA89, 2 of the 15 plants studied were different from the others by one and 9 probeenzyme combinations respectively. For line CX, 3 of the 13 plants analyzed were differentiated with the other plants by 6, 1 and 4 probe-enzyme combinations respectively. Within line RHA266, 3 of the 10 plants were distinguished from the others by just one probeenzyme combination. In line PAC2, no intraline variability has been detected by the 30 probe-enzyme combinations analyzed.

Discussion

The average number of RFLP variants detected by probe-enzyme combination across the 46 lines studies was about 6; this result confirmed the reports made by Berry et al. (1994) and by Gentzbittel et al.(1994) and Zhang et al. (1995); this means that the cultivated sunflower has a relatively high level of RFLP which is comparable with those reported in maize (Messmer et al., 1991, Smith et al; 1991, Livini al et. 1992). This level of polymorphism is three times higher than that revealed by isozymes in sunflower inbred lines (Quillet et al. 1992; Bourgoin-Grenèche, personal communication). The gene diversity calculated for the 46 inbred lines with this set of selected probes is on average 0.63, which is similar to that obtained on an other set of sunflower inbred lines (Zhang et al., 1995) but superior to the 0.49 reported by Berry et al. (1994).

The RFLP data obtained allowed a separation of M lines from R lines, with a few exceptions. This confirm the previous reports (Berry et al., 1994; Gentzbittel et al., 1994; Zhang et al., 1995) as well as the results obtained from isozymes (Bourgoin-Grenèche, personal communication), and is in concordance with the difference in morphology between these 2 types of lines in sunflower. Among the 46 lines analyzed, there are the 7 pairs of lines (1-2, 1-18, 2-18, 3-4, 29-34, 37-39 and 28-31) for them no difference (1-2, 1-18, 2-18, 3-4 and 29-34) or just some very small differentiation (37-39 and 28-31) can be observed from each other, based on morphological characters. From RFLP data, these pairs of lines showed the biggest similarity index values (> 0.90). Such a result proved the good precision of RFLPs on the estimation of genetic distance between inbred lines in sunflower.

Intraline variability has been detected by RFLP in three of the four lines analyzed; the degree of this variability varied according to line. This kind of variability has been already revealed by isozyme analysis and observed in the field on other sunflower inbred lines. There appear two explanations for some intraline variability on RFLP in cultivated sunflower. Firstly, the cultivated sunflower is an outbreeding species with forced selfpollination, secondly, RFLP loci have not been taken into consideration in the breeding programs until now. It should be indicated that these four inbreds examined in this study presented a good uniformity of morphological characters in the field. The heterogeneity may have a consequence in the study of distinctness based on DNA profiling because the more the degree of heterogeneity of a line is high, the more the distinctness of that line from the others is easy.

Conclusions

The results of the present study show that the RFLP data are potentially very useful in description and identification of sunflower inbred lines. RFLP has also been proved to be

BMT/3/10 page 5

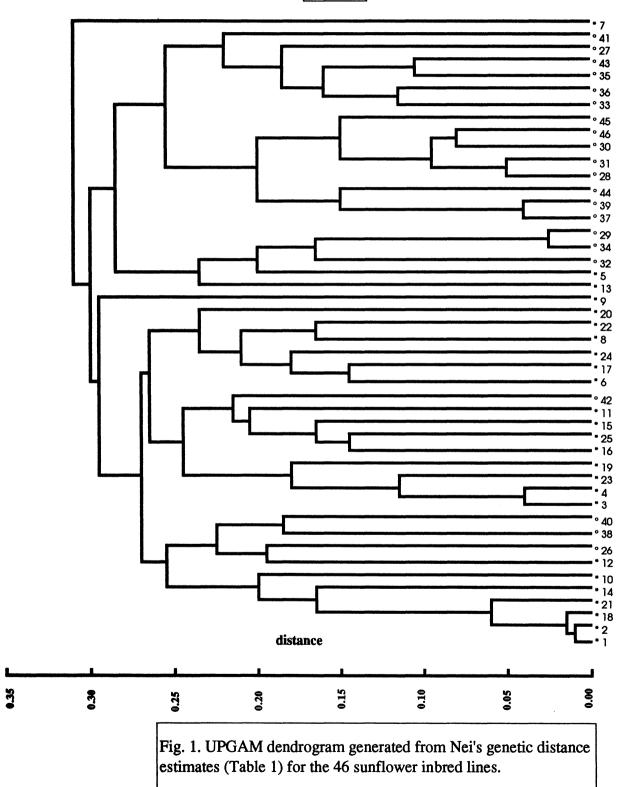
very powerful tools to determine the relations and to measure the genetic distance between lines. Compared with morphological characters, RFLPs have many advantages as descriptors of lines and varieties : unlimited number, independence of culture conditions, high level of polymorphism. This type of descriptor is especially useful to the cultivated sunflower which is extremely susceptible to the culture conditions ; the phenotype of a same inbred sunflower line may vary with the culture conditions and year. Thus, the whole set of reference varieties and lines has to be grown and observed each year and this is very expensive. The usual morphophysiological characters used for DUS testing in sunflower show more and more limits to describe correctly the numbers of inbred lines and varieties that increase year by year. In the future, the combination of both the classic morphophysiological characters and a genetic distance based on RFLP data in sunflower would improve the accuracy of description of inbred lines and varieties in the DUS testing and strengthen plant breeder's rights. Furthermore, the DNA markers like RFLPs might play an important role in the establishment of essential derivation because of its high number and good precision.

Acknowledgments

Author wishes to thank F. Blouet for her interesting discussions and supplying the plant materials. This research was carried out under a cooperation with the group 'GIE CARTISOL', and is partly supported by a grant from the Ministère de l'Agriculture et de la Pêche of France and by the Contrat de Plan Etat-Région d'Auvergne 'Semences et Plants'.

References

- Berry, S.T., Allen, R.J., Barnes, S.R. and Caligari, P.D.S. 1994. Restriction fragment length polymorphism between inbred lines of cultivated sunflower (Helianthus annuus L.). Theor. Appl. Genet. 89: 435-441.
- Gentzbittel, L., and Nicolas, P. 1990. Improvement of "A BASIC program to construct evolutionary trees from restriction endonucleases data" with the use of PASCAL language. J. Hered. 81: 491-492.
- Gentzbittel, L., Zhang, Y.X., Vear, F., Griveau, B., and Nicolas, P. 1994b. RFLP studies of genetic relationships among inbred lines of cultivated sunflower, *Helianthus annuus*.
 L. : evidence for distinct restorer and maintainer germplasm pools. Theor. Appl. Genet. 89: 419-425.
- Livini, C., Ajmone-Marsan, P., Melchinger, A.E., Messmer, M.M., and Motto, M. 1992. Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor. Appl. Genet. 84 : 17-25.
- Messmer, M.M., Melchinger, A.E., Lee, M., Woodman, W.L., Lee, E.A., and Lamkey, K.R. 1991. Genetic diversity among progenitors and elite lines from the Iowa Stalk Synthetic (BSSS) maize population: comparison of allozyme and RFLP data. Theor. Appl. Genet. 83: 97-107.
- Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.


- Nei, M., and Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci. USA 76 : 5269-5273.
- Quillet, M.C., Vear, F., and Branlard, G. 1992. The use of isozyme polymorphism for identification of sunflower (*Helianthus annuus*) inbred lines. J. Genet. & Breed. 46: 295-304.
- Smith, J.S.C., and Smith, O.S. 1991. Restriction fragment length polymorphisms can differentiate among U.S. maize hybrids. Crop Sci. 31: 893-899.
- Sneath, P.H.A., and Sokal, R.R. 1973. Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman, San Francisco.
- Zhang, Y.X., Gentzbittel, L., Vear, F. and Nicolas, P., 1995. Assessment of inter- and intra- inbred line variability in sunflower (*Helianthus annuus*) by RFLPs. Genome (in press).

.

Table 2. Intraline variability revealed by RFLPs in four sunflower inbred lines

Lines	Nb of plants analysed	Nb. of probe-enzyme combinations assayed	N° of the plant	Nb. of probe-enzyme combinations distinguishing this plant from the others
HA89 (CD)	15	29	p1	1
		29	p2	9
СХ	13	30	p5	6
·		30	p13	1
		30	p14	4
RHA266	10	30	р3	1
		30	- p7	1
		30	p8	1
PAC2	14	30	0	0

2

Table 1. Nei and Li's F index (below diagonal) and estimates of nucleotide substitutions per nucleotide site (above diagonal)

for pairwise combinations among the 46 inbreds of sunflower

Tince						1						;			;			1													•								
		* 2224	- 10		- a				1500 2164						2005						252 200				Į								2054 332			1			
Τ	. 16,0				89								2026			158 2496		8												2099									
Γ	0,68 0,67														-															3359							• •		
		0,69 0,93	ç	3064	9039	3610	2393 3	3194 26	3680 2505	05 2499	9 2836	2809	3606	1954 2	2596 20	2066 1781	1 2058	3367	2906	1009 33	3316 1726	11 3112	1606		3479 6	e 112	1946 3548	1 2462	3176	2259	2462 3	3549 39	2916 3453	53 3071	1 3022	1753	2000 33	1209 4613	-
'n	0,59 0,6	0,61 0,62	6,9 2	-	3144	3963	2801 2	2728 28	2005 2291	91 3262	2 2292	3487	2701	3126	3006 27	2760 2945	5 2563	16 00	2997 2	3624 29	7915 1962	1 2974	2793	2708	3426 3	3160 2997	97 1822	2 2875	2005	2455	3449 2	3360 34	3470 2256	56 3160	0 3854	3645	3018 23	2394 2765	• ·
Γ	0.69 0.71	71 0.61	65'0 19	0.0		2325	1 0115	1963 18	1807 2596	96 2293	3 2695	1686	2015	2559	1446 19	1907 1729	9 2261	2170	2357 1	31 7781	1625 2485	15 2746	1936	3695	2941 21	2801 3084	14 2004	1 2363	2587	2363	2057 3	3367 24	2455 3367	61 2695	\$ 2357	2997	2294 23	2392 3333	
	0,59 0,57	57 0,55	55 0,54	1 0,60	6,67		E 2661	2092 32	3281 2622	22 2836	9336	2016	2836	2361 2	3601 28	95 3263	3 3672	1772	3917 2	2061 32	3211 2190	1365 0	2816	3336	3372 3	1926 9566	1726 18	1 2906	3317	3126	2906 2	2590 23	2360 2952	53 2505	5 3261	3190	2715 26	3622 3170	
	0,71 0,69	.69 0,67	57 0,66		0, 69	0,71	ň	3362 24	3438 1954	5(2359	9 2257	2768	3062	1832 3	2358 16	1055 2529	9 2640	1940	1658 1	1913 20	2005 2162	2942	2965	1916	2394 2	2792 33	3333 3263	3 306	2359	3639	3078 2	2219 29	2975 2656	58 2360	0 2126	2632	2885 28	3801 3100	0 3126
<u> </u>	0,59 0,60	.60 0,57	57 0,58	6.62	0,71	0,59	0,57	52	2567 3708	04 2929	9 2940	2801	3044	3141 3	3695 30	98 2460	0 3367	2460	3750 2	27.35 35	3536 3263	2 2356	2490	3940	3967 2	2606 2895	95 2857	7 2668	6166 1	2662	3112 3	3430 28	2005 3173	73 2627	7 3492	3538	3145 30	3071 3663	
		74 0.64		19'0 6	0,73	0.57	0,66 0	0,64	3013	13 2122	2 2001	1848	2630	3616 3	2963 16	1635 2291		3606	2636 2	2062 27	2764 2749	19 2601	3194	6513	3538 31	11 CLLC	1616 1919			2818	4237 3		3192 4095			2855			
=	0,68 0,68	.68 0,68	68 0,65	5 0,67	0,64	6,6	0,71 0	0,53 0,	0,59	2928	8 2253	2906	2150	1805 2	2792 20	23 3245	5 2434	2632	2325 2	2291 28	2836 2053	3 2757	2058	303	2289 2	2362 2658	58 3820	0 2861	2150	3106	2661 2	2325 28	2092 2213	13 2565	5 2654	2215	3157 24	3675 2639	
Γ		0,70 0,64	64 0,65		0,67		0,66 0	0,60 0,	0,69 0,60	<u>9</u>	3467	1880	1961	2119 2	3162 21	2129 3092		3640	2757 2	2292 24	2496 2062	1940	2668	3035	2611 31		3106 30511	11 2749	2571	3636	2975 3		2537 3415	15 2053		2892		2470 3245	
Γ	0,66 0,67	.67 0,62	E2 0,61	1 0,67	0,63	0,56 0	0,67 0	0,60 0,	0,61 0,68	68 0,65	~	3126	3467	3545 2	2695 24	28 3352	3 2681	3352	2432 2	2291 22	2291 1680		2895	3810	2186 34	3430 2881	81 2842	2 2987	1954	2749	3352 2	2436 35	3502 2325	25 3300	9636 0		3515 29	2940 2633	
Γ	0,76 0,74	74 0.60	60 0° 62	2 0,65	0,74	0,61	0,62 0	0,62 0,	0,72 0,61	61 0,72	2 0,58		2563	3136 2	2357 16	1604 2325	5 2963	1678	3078 2	2592 30	3018 2457	7 3051	3196	3864	3160 33	3967 385	3820 2516	6 3296	3112	1506	3415 3	EE 9696	3314 3502	02 2744	4 3561	2671	2875 27	2792 6168	1 3228
	0,71 0,70	.70 0.62	62 0,64	6.0	0,70	0,61 0	0,70 0	0,59 0,	0,66 0,69	69 0,71	1 0,65	0,64		1728 2	2359 18	48 3211	1 2223	2325	2223 1	1906 23	2393 1602	2 2129	2066	2801	2722 3(3035 3352	52 3051	1 2749	3464	2139	2861 2	2903 25	2537 3026	26 2256	6 2757	6161	2258 21	2150 2989	
16	0.77 0.7	0,75 0,69	69 0,71	1 0,58	0,64	0,66	0 . 67.0	0,58 0,	0,64 0,73	73 0,69	9 0,64	0,69	0,74	••	2640 14	1448 2836	6 1694	197	1963	16 2191	3141 1468	8 2827	2749	3526	2928 3	3264 3876	76 3504	4 3192	2765	2190	2836 2	2877 23	2396 3003	03 2219	9 2845	2075	3646 26	2636 3644	
17	0,70 0,7	0,70 0,60	60 0,64	e 0,60	0,78	0,64	0,66 0	0,63 O,	0,60 0,62	63 0,69	9 0,61	0,66	0,66	0,63	61	52 2629	9 2529	3325	2226 2	2391 20	2011 2358	8 2941	2357	3492	3160 3:	3245 3689	89 3026	6 2952	2997	2941	3179 3	3502 26	2635 3502	3009	9 2963	2757	2358 25	2571 4020	
18	0,98 0,97	. 97 0, 69	69 0,70	0,62	0,72	0,61	0,72 0	0,59 0,	0,75 0,7	70 0,69	9 0,66	0,75	0,72	0,78	0,71	2493	3 2193	966	1 9061	1625 23	2358 1855	5 2293	2325	196E	3245 3:	3211 4057	57 3559	1E0E 6	2963	2197	3145 3	3045 20	2096 3209	EE 61 60	3 3280	1971	3629 18	1832 3840	
19	0,63 0,6	0,65 0,71	er.,o 11	3 0,60	0,74	0,57	0,64 0	0,65 0,	0.67 0.57	57 0,59	9 0,56	0,67	0,58	0,61 0	0,63 0,0	0,65	3176	3160	3176 1	1701 28	2845 2426	6 3504	2842	3743	3916	4165 3952	52 2293	3 2496	3457	2493	2929 3	3766 31	3176 3626	26 2987	7 2606	2505	2742 30	3000 4019	
20	0,66 0,67	.67 0,66	66 0,70	0 0,64	0,67	0,53	0,63,0	0,56 0,	0,60 0,66	66 0,67	7 0,61	0,60	0,68	0,74 0	0,64 0,	0,68 0,58		2715	2188 1	1602 22	2258 2126	6 2818	2325	3372	2801 3	3502 3965	85 3245	5 2394	2537	1014	3606 3	92 9766	2952 3653	53 2765	7165 2	1355	2640 27	3714 3906	
21	0,82 0,4	0,81 0,55	55 0,56	6 0,59	0,68	0,73	0,71 0	0,65 0,	0,64 0,66	66 0,63	3 0,56	0,74	0,67	0,73 0	0,67 0,	84 0,5	8 0,62		3499 2	3668 26	3668 2635	5 2596	2132	3352	3515 24	2430 3422	22 3830	0 2929	3585	2701	2708 2	32 7672	2499 3227	7261 75	7 2606	2505	2742 20	2018 3729	
	0,70 0,6	0,68 0,58	58 0,61	1 0,60	0,66	0,60	0,75 0	0,53 0,	0,61 0,67	67 0,63	2 0,66	0,59	0,68	0,71 0	0,68 0,	72 0,5	8 0,68	0, 65		2567 18			2851					8 2940	3133	3601		2399 23	2395 2512		2 2188		2749 2774	14 3208	
	0,72 0,74	.74 0,80	80 0,84	6,0.1	0,72	0,61	0,72 0	0,62 0.	0.70 0,67	67 0,67	7 0,67	0,64	0,72	0,78 0	0' 99'0	0,75 0,74	4 0,75	0,63	0,64	8	2325 1392				-								3126 2810				2195 2395		
Т	0,64 0,65	.65 0,58	58 0,57	7 0,60	0,75	0,58		0,54 0,	0,62 0,61	61 0,65	5 0,67		0, 66		0,70 0,	66 0,6	1 0,67				IEOE	1 2985			•														
Τ	0,69 0,6	0,69 0,72	72 0,74	6 0,68	0,65		0,69,0	0,57 0,			0 0,74		0,75		0,66 0,																								
Т																0,67 0,55		0, 64		0,59 0,			1952																
Τ		0,67 0,60	60 0,59	9 0,62	11,0		0,60	0,65 0,	0,58 0,70		3 0,61		0,70		0.66 0.	67 0,6	1 0,67							1515															
Т																51 0,5	3 0,56								1885 11	1125 487													
T																																							
e :					9, 5 9, 5	3. i				8 ° °		0,56	0,59	0,57		0,58 0,49	9 0,55	99'0	0,64 0	0,50 0,	0,59 0,54	69 ° 69	7, 1	ខ្ល ផ្លូ	0,74 11	947	17 2526	6 2646	2053	3660	2967 2	2791 25	2541 2671	71 3049	5325	5963	2464 2585	2585 1964 7445 1964	87
T	76'N NG'N	59'n TC'n																																					
Τ																									-		51 0.72		1658										
Γ																									-	0,70 0,74		7 0.75											
35	0.67 0.69	.69 0,66	66 0,67	7 0,65	0,67	0,58	0,63 0	0,63 0,	0,61 0,59	59 0,66	6 0,62	0,59	0, 69	0,68	0,60 0,	68 0,65	5 0,73	0, 63	0,64 0	0, 73 0,	0.62 0,68		0.71	0,67	0, 69 ,0	,63 0,64		3 0,75	0,69		1823 2	2505 20	2096 2045	15 2224	1 2292	3611	1026 2223	13 2255	
36	0,56 0,5	0,58 0,64	64 0,65	5 0,55	0,61	0,61	0.59 0	0,58 0,	0,49 0,61	61 0,60	0 0,56	0,56	0,61	0,61 0	0,58 0,	58 0,60	0 0,64	0,63	0,60 0	0,64 0,	0,64 0,62		0,72	0,66		0,60 0,64	64 0,64	4 0,82	0,66	0,73		2976 29	2940 2976		566T 9		1411 3121		
37	0,58 0,5	0,59 0,55	55 0,54	4 0,66	0,56	0,64	0,68 0	0,55 0,	0,52 0,67	67 0,54	¢ 0,65	0,54	0,61	0,61 0	0,55 0,	59 0,52	2 0,56	0,62	0,66 0	0,63 0,	0,64 0,61		0,66	6,67	0,69 0,	0,62 0,63	63 0,62	2 0,67		0,65	0, 60	21	45 380		3 2745		3831 7616	88 1700	
38	0.70 0.7	0,71 0.52	52 0,51	1 0,55	0,65	0,66	0,60 0	0,61 0,	0,58 0,61	61 0,64	¢ 0,55	0,57	0,64	0,66 0	0,63 0,	69 0,58	8 0,60	0, 65	0,66 0	0,58 0,	0,59 0,63		0,73	0,73	0,60 0,	0,64 0,72	72 0,60			0,69		0 , 62	2745		3 2502		2749 1913	1733	
39	0,56 0,5	0.57 0.58	58 0,55	5 0,68	0,56	0,60	0,63 0	0,58 0,	0,50 0,68	68 0,56	6 0,67	0,55	0,59	0,60	0,55 0,3	0,58 0,54	¢ 0,53	0,57	0,65 0	0,61 0,	0,61 0,59	9 0,60	0,63	0,68	0,73 0,	0,63 0,67	67 0,62	2 0,71		0,61	0,60 0		0,62	2438	8 2866	2519	3393 1682	51 1913	
40	0.72 0.73	.73 0.60	60 0,59	9 0,54	0,63	0,65	0,66 0	0,61 0,	0,66 0,64	64 0,70	0 0,57	0,62	0,68	0,68 0	.'0 65'0	0,71 0,60	0 0,62	0,71	0,63 0	0,62 0,	0,61 0,59	9 0,69	0,63	0,0	0,64 0,	0,59 0,60	60 0,56	6 0,66		0,68			0,73 0,65	5	2765		2792 1941	11 3003	
41	0,55 0,5	0,57 0,58	58 0,59	9 0,52	0,66	0.57	0, 69 ,0	0,55 0,	0.52 0.63	63 0,59	9 0,54	0,54	0,62	0,61 0	0,60 0,1	0,57 0,64	4 0.57	0,64	0,68 0	0,64 0,	0,72 0,54	4 0,57	0,68	0,69	0,60 0.	0.67 0,67	67 0,63	3 0,69	0,61	0.67	0.71 0		0,65 0,61	11 0,62	~	2394	2224 2892	2829	
42	0,72 0,72	73 0.73	72 0,74	4 0,54	0,60	0,58 0	0,66 0,	0,54 0,	0,61 0,68	19'0 81	1 0,57	0,61	0,72	0,70 0	0,62 0.	0.73 0.65	5 0,56	0,65	0,59 0	0,69 0,1	0,53 0,66	6 0,60	0,69	0,57	0,55 0,	0,61 0,55	55 0,52	2 0,58	0,57	0,64	0,61 0	0.63 0,0	0,65 0,65	5 0,72	2 0,66		2765 2107	7 3345	
43	0.64 0.4	0.63 0.67	67 0,71	1 0,59	0,67	0,62	0, 61 0	0,58 0,	0,56 0,58	58 0,59	0,55	0,61	0,67	6,6	0,66 0,1	0,63 0,63	2 0,63	0,62	0,62 0	0,68 0,	0,62 0,65	5 0,58	0,71	0,65	0,62 0,	0,65 0,62	62 0.73	3 0,76	0,63	0,83	0,78 0		0,62 0,56		2 0,68	0,62	3035	15 2976	6 2784
3	0,72 0,74	.74 0,59	59 0,58	8 0,66	0,66	0,63	0,62 0	0,59 0,	0,59 0,65	65 0 , 65	5 0,60	0, 62	0,69	0,65 0	0,64 0,	0,73 0,60	0 0,62	0,70	0,62 (), 66 0,	60 0,61	8 0,68	0,72	0,68		.64 0,	64 0,61			0, 68							0, 59	3065	
	0,52 0,5	0,53 0,48	88 0,46	6 0,62	0,56	0,58 0	0,55 0,	0,53 0,	0,50 0,63	63 0,57	1 0,63	0, 49	0, 60	0,54 0	0,50 0,	0,52 0,50	0 0,51	0, 53	0,58 0	0,52 0,	0,59 0,55	5 0,65	0, 68	0,82 (0,71 0,83		9 0,64	0, 68	0,68		0.74 0.	0,74 0,72	12 0,60	0 0,61	0.57		0,70	1769