WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES, AND DNA-PROFILING IN PARTICULAR

Thirteenth Session
Brasilia, November 22 to 24, 2011

ADDENDUM

DEMONSTRATION OF SIGNIFICANT PROGRESS TOWARDS AN OPTION 1 APPROACH IN BARLEY

Document prepared by experts from the United Kingdom
Plant Science into practice

SNPs for barley DUS assessment:
James Cockram and Donal O’Sullivan

Advances in understanding the molecular basis for variation in barley characteristics:

A project funded by Fera

© Copyright NIAB
SNPs for barley DUS assessment:
James Cockram and Donal O’Sullivan

Advances in understanding the molecular basis for variation in barley characteristics

- Association Genetics of UK Elite Barley (AGOUEB), BBSRC LINK project
- ~500 barley varieties genotyped
- 1536 SNP loci
- Association mapping used to detect associations between SNPs and DUS characteristics

Objectives

- Identification of relevant genetic loci
 - 28 DUS characteristics (some VCU characteristics also used)
 - Literature searches showed genetic loci mapped for 12 of the 28 DUS characteristics
- Identification of relevant genetic markers
 - Genotype assays designed for each selected gene
- Genetic marker validation
 - 90 European barley varieties (malting, feed, 2/6 row, winter/spring)
- Interpretation of DUS marker genotypes
 - Predictive value of genetic markers for the relevant characteristic assessed
The KASPar platform

Visualisation of SNP data generated from assay HvOs03g14250_C82T (kernel: colour of aleurone layer), using SNP Viewer (KBiosciences). The alternative SNP genotypes are clearly distinguishable (T:T = red, C:C = blue), with heterozygous individuals (T:C = green) unambiguously clustered in a separate cloud. The water negative control is shown in black, while unknown calls (predicted to represent wells which lack DNA) are shown in pink.

Relevance to DUS testing and objectives

• Developments in the genetic understanding of DUS characteristics are now being matched by advances in cheaper genotyping platforms
• Project aimed to produce a rapid marker test for as many DUS barley characteristics as possible
• Assess linked and putatively causative SNPs for their ability to predict DUS characteristic states
Genetic marker validation

• 82 assays designed and converted to the KASpar platform
• 3 did not work and 20 were unreliable – this was due to insufficient separation between allele clusters, or inability of the KASpar platform to convert assays testing for Indel genetic polymorphisms
• 57 reliable assays had a missing score rate of 1% (a high genotyping success rate)

Genotyping validated markers in UK germplasm

• 169 UK barley varieties were genotyped with the 57 validated KASPar assays and compared to a database of phenotypic data
• Predictive values were based on the percentage of correctly called characteristic scores
• Predictive values varied widely, with highest values obtained from markers originating from cloned genes
Group 1: Characteristics which provide perfect (100%) prediction by markers

- Ear: number of rows
- Grain: disposition of lodicules
- Seasonal growth type

Group 2: Characteristics which provide very good (>90%) prediction by markers

- Kernel: colour of aleurone layer
- Lower leaves: hairiness of leaf sheaths
Group 2: Characteristics which provide good (>80%) prediction by markers

- Sterile spikelet: attitude
- Grain: ventral furrow – presence of hairs

Prediction of phenotypes from markers

- Highest values obtained from markers originating from cloned genes (seasonal growth type)
- Although a marker prediction score of 100% was observed for “Grain: disposition of lodicules”, only one variety in the UK panel had ‘bib’ type phenotype
- Markers for “Lower leaf: hairiness of leaf sheaths” gave a 96% predictive value
- This characteristic is difficult to score in the field and is a good candidate for map-based cloning
- For the anthocyanin based characteristics (3, 7 and 23), markers were able to predict presence or absence of anthocyanin, but not intensity
Predictive values of genetic markers for DUS characteristics

<table>
<thead>
<tr>
<th>Trait</th>
<th>UPOV No.</th>
<th>Marker</th>
<th>Chr</th>
<th>Vars</th>
<th>Geno & Pheno No.</th>
<th>Pred correct</th>
<th>Pred %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth habit 1</td>
<td>1</td>
<td>HvFT3_FC816A</td>
<td>1H</td>
<td>122 107</td>
<td>87.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower leaves: hairiness of leaf sheaths 2G</td>
<td>2</td>
<td>HvOs03g03180_A447G</td>
<td>4H</td>
<td>158 151</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower leaves: hairiness of leaf sheaths 2G</td>
<td>3</td>
<td>HvOs03g03034_G93A</td>
<td>4H</td>
<td>158 148</td>
<td>93.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower leaves: hairiness of leaf sheaths 2G</td>
<td>4</td>
<td>Hv11_11299_GC</td>
<td>4H</td>
<td>156 151</td>
<td>96.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower leaves: hairiness of leaf sheaths 2G</td>
<td>5</td>
<td>Hv11_20007_GA</td>
<td>4H</td>
<td>155 140</td>
<td>90.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flag leaf: intensity of anthocyanin colouration of auricles 2</td>
<td>6</td>
<td>HvANT2_C4289T</td>
<td>2H</td>
<td>146 144</td>
<td>98.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awns: intensity of anthocyanin colouration of awn tips 2</td>
<td>7</td>
<td>HvANT2_C4289T</td>
<td>2H</td>
<td>148 145</td>
<td>97.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: anthocyanin colouration of lemma nerves 2</td>
<td>8</td>
<td>HvANT2_C4289T</td>
<td>2H</td>
<td>153 142</td>
<td>92.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear: number of rows 3</td>
<td>9</td>
<td>HvVRS1_C349G</td>
<td>2H</td>
<td>160 152</td>
<td>94.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear: number of rows 3</td>
<td>10</td>
<td>HvVRS1_GINS681</td>
<td>2H</td>
<td>160 145</td>
<td>90.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear: number of rows 4</td>
<td>11</td>
<td>HvVRS1_C349G</td>
<td>2H</td>
<td>159 152</td>
<td>95.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear: number of rows 5</td>
<td>12</td>
<td>Hv11_20606_GC</td>
<td>4H</td>
<td>157 157</td>
<td>99.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterile spikelet: attitude (mid 1/3 of ear) 6</td>
<td>13</td>
<td>Hv11_10933_GC</td>
<td>1H</td>
<td>128 113</td>
<td>87.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterile spikelet: attitude (mid 1/3 of ear) 6</td>
<td>14</td>
<td>Hv11_11359_GC</td>
<td>1H</td>
<td>127 111</td>
<td>86.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterile spikelet: attitude (mid 1/3 of ear) 6</td>
<td>15</td>
<td>Hv11_21333_CG</td>
<td>1H</td>
<td>128 110</td>
<td>85.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: rachilla hair type 21</td>
<td>16</td>
<td>Hv11_20449_TA</td>
<td>5H</td>
<td>161 79</td>
<td>48.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: rachilla hair type 21</td>
<td>17</td>
<td>Hv11_10622_GA</td>
<td>5H</td>
<td>152 104</td>
<td>68.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: rachilla hair type 21</td>
<td>18</td>
<td>Hv11_20850_AG</td>
<td>5H</td>
<td>160 111</td>
<td>68.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: spiculation of inner lateral nerves 7</td>
<td>19</td>
<td>Hv11_10818_CA</td>
<td>2H</td>
<td>157 92</td>
<td>58.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: spiculation of inner lateral nerves 8</td>
<td>20</td>
<td>Hv11_11435_AG</td>
<td>2H</td>
<td>158 92</td>
<td>57.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: ventral furrow - presence of hairs 25</td>
<td>21</td>
<td>HvOs02g01490_G607A</td>
<td>6H</td>
<td>161 132</td>
<td>81.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: ventral furrow - presence of hairs 25</td>
<td>22</td>
<td>Hv11_21204_GA</td>
<td>6H</td>
<td>160 114</td>
<td>70.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: disposition of lodicules 9</td>
<td>23</td>
<td>HvCly1_A2604G</td>
<td>2H</td>
<td>155 155</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain: disposition of lodicules 10</td>
<td>24</td>
<td>HvCly1_A2664C</td>
<td>2H</td>
<td>156 155</td>
<td>98.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel: colour of aleurone layer 11</td>
<td>25</td>
<td>HvOs03g14250_C82T</td>
<td>4H</td>
<td>157 135</td>
<td>85.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel: colour of aleurone layer 12</td>
<td>26</td>
<td>HvOs03g14380_G125A</td>
<td>4H</td>
<td>158 146</td>
<td>92.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kernel: colour of aleurone layer 13</td>
<td>27</td>
<td>Hv11_21296_CA</td>
<td>4H</td>
<td>155 143</td>
<td>91.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal growth habit 14</td>
<td>28</td>
<td>VRN – H1 Multiplex PCR</td>
<td>5H</td>
<td>143 143</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal growth habit 15</td>
<td>29</td>
<td>HvVRNH1_SNP2</td>
<td>5H</td>
<td>137 129</td>
<td>94.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal growth habit 16</td>
<td>30</td>
<td>HvVRNH1_SNP2 & HvVRNH1_hap2_InDel</td>
<td>5H</td>
<td>135 134</td>
<td>99.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positives.....

- 13 assays give perfect or very good predictions of DUS characteristics
- KASPar assays could be supplemented by some agarose-based INDEL analysis
- Information could be used to populate a molecular database
- Similar varieties could be grouped in the field
- Group 1 characteristics with 100% prediction (Seasonal growth type; Grain:disposition of lodicules; Ear: number of rows) could potentially be replaced by genotyping
- Cost of genotyping is low
Negatives.....

- Anything with less than 100% prediction is not as good as phenotyping!
- Uniformity not currently assessed
- Replacing field assessment with assays for two of the characteristics from Group 1 would be of no immediate benefit:
 - Ear: number of rows, quick and easy assessment in the field
 - Grain: disposition of lodicules, difficult to assess but only one variety found with 'b6' type lodicules!
 - Seasonal growth type was assessed separately in another project reported at the 2010 BMT

Conclusions

- Considerable progress has been made towards the understanding of the genetic control of DUS characteristics in barley
- Assays have been developed to predict DUS characteristics with high success rates
- Although 100% success rate was achieved in some characteristics, this is needed in all characteristics if phenotypic assessment is to be replaced
- Uniformity assessment needs to be addressed before implementation of a molecular assay for DUS characteristics
- Marker assays are currently not as good as the field assessment!