

BMT/13/29

ORIGINAL: English

DATE: November 17, 2011

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES, AND DNA-PROFILING IN PARTICULAR

Thirteenth Session Brasilia, November 22 to 24, 2011

SURVEILLANCE: THREE APPROACHES TO USING SNPS (SINGLE NUCLEOTIDE POLYMORPHISMS) TO IDENTIFY VARIETY (INBRED LINE) USAGE

Document prepared by experts from Pioneer

Surveillance: Three approaches to using SNPs (single nucleotide polymorphisms) to identify variety (inbred line) usage

Barry Nelson, Stephen Smith & Elizabeth Jones

Variety Surveillance

- Without surveillance and enforcement, why file for PVP protection?
- Program based on DNA markers (now SNPs), but previously used RFLPs and SSRs.
 - Minimize G X E interactions and subjectivity of morphology observations
 - Identity of parental inbred lines "obscured" by heterosis (hybrid vigor)

Variety Surveillance

- · Competitor hybrids purchased
- Profiled with 1536 SNPs (proprietary and public) or subsets of 768, 40, or 16 SNPs depending on analysis approach
 - Material profiled with replicated known standards to assess data quality
- Data analyses
 - Three approaches

Approaches to Surveillance

- 1. Variety Similarity
 - Essentially Derived Variety (EDV)
- 2. Use of specific inbred lines via Pedigree Statistics analysis
 - Algorithm that selects most likely parentage
- 3. Use of specific inbred lines via a specially selected, highly discriminative set of SNPs
 - Algorithm used to select a small number of SNPs (<50) that will uniquely identify backgrounds of subject germplasm

1. Variety Similarity

- · Obtaining parental profiles
 - Pericarp inherited from female parent
 - Male SNP profile = Hybrid SNP profile Female SNP profile

ISF EDV DEFINITION -SSR

- · Based on marker similarity
- · 3 level threshold
 - <82% -GREEN ZONE -Not at EDV
 - 82%-90% -ORANGE ZONE –Burden shifts to breeder of putative EDV
 - >=90% -RED ZONE -Strong indication of predominant derivation
- Functional SSR and SNP threshold translation estimate based on US and EU PVP inbreds w/public SSRs and SNPs

SSR threshold % similarity	SNP threshold % similarity	
82	87-90	
90	93-94	

1. Variety Similarity -Results

- · Northern Hemisphere Region:
 - 8 competitor hybrids have pericarp similarities (87-91%) to another proprietary inbred line
 - 4 competitor hybrids have deduced male similarities (85-88%) to another proprietary inbred line
- Southern Hemisphere Region:
 - 11 competitor hybrids have similarities (99.2-99.8%) to another proprietary hybrid
 - 1 competitor hybrid with pericarp similarity (95%) to another proprietary inbred line

Project to develop new maize EDV thresholds using SNPs

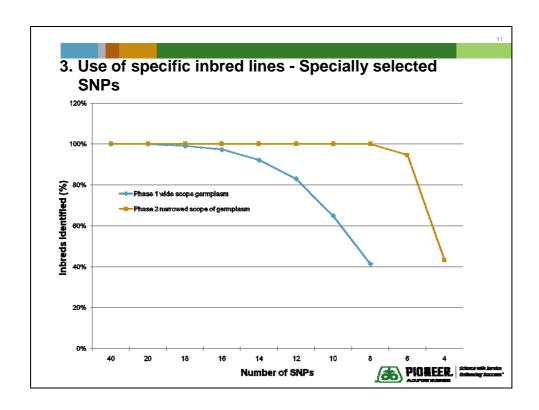
- Collaboration between ASTA (American Seed Trade Association) and UFS (l'Union Française des Semenciers)
- · Examining widely used germplasm pools from US an EU
- Industry members added specific pairs of inbreds that are highly related (off-PVP) to address the EDV zones
- · Profiled with Illumina 56,000 public SNP chip
- · Post-doc at INRA currently analyzing the data
- Questions being addressed:
 - How many SNPs need to be analyzed to help determine EDV status?
 - What are the selection criteria for SNPs (genome coverage and informativeness)?

2. Use of specific inbred lines - Pedigree statistics analysis

- Pedigree Statistics (Berry, et al., 2002, Jones et al., submitted to

 - Berry, D.A., J.D. Seltzer, C. Xie, D.L. Wright and J.S.C. Smith, 2002. Assessing probability of ancestry using simple sequence repeat profiles: applications to maize hybrids and inbreds. Genetics 161:813-824.

 Jones, E.S., S. Wall, D. Berry, D. Wright, and J.S.C. Smith. 2011. Assessing the Probability of Parentage in Maize Hybrids and Inbreds using Single Nucleotide Polymorphisms. In Press.
 - Identifies relative likelihood of parentage from a reference
 - Rank orders the most likely parents of a hybrid


Hybrid	Inbred Rani	red	Rank Order	Pro	ob_PedStats
HYB1	INB1			1	1.00000000
HYB1	INB5			2	1.00000000
HYB1	INB6			3	0.00000000
HYB1	INB2			4	0.00000000
HYB1				5	0.00000000
HYB1				6	0.00000000
HYB1				7	0.00000000
HYB1				8	0.00000000
HYB1				9	0.00000000
HYB1				10	0.00000000

3. Use of specific inbred lines - Specially selected, highly discriminative SNP set

- Developed a high throughput variety identification screening process
 - To manage cost and sample/results turn-around, a smaller SNP set was selected specifically to provide maximum discrimination among a particular set of
- Jones et al., (2010) found that 16 SNPs were sufficient to distinguish ~400 inbreds
 - Jones, L., S. Wall, B. Nelson, and J.S.C. Smith, 2010. Varietal Identification in Maize: Are Sixteen SNP markers Sufficient? BMT/12/15 Twelfth Session Ottawa, May 11-14, 2010. UPOV, Geneva, Switzerland

3. Use of specific inbred lines - Specially selected SNPs

- 40 SNPs selected
 - still a manageable number and gives extra redundancy
- Samples (leaf tissue and seeds) were interrogated with the 40 SNPs and compared to known germplasm profiles for identification

3. Use of specific inbred lines - Specially selected SNPs

- To date: 52 samples have been analyzed identifying 18 instances of a specific proprietary inbred line or hybrid.
 - 18 misappropriations led to 8 lawsuits
 - 2700 hectares surveyed, 530 hectares contained misappropriated seed
 - Valued at ~\$5 Million (US)
- Expect to analyze another 800 samples by year end.

Summary

- Surveillance approaches using pedigree statistics and variety identification have identified several actual and other potential cases of misappropriation.
- Surveillance and enforcement are important components of ensuring effective Plant Breeders Rights.
- Enforcement of Plant Breeders Rights helps assure increased investments in, and generation of new more productive varieties for farmers, and ultimately for the benefit of consumers.

