

BMT/13/19 Add.
ORIGINAL: English

DATE: December 8, 2011

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES, AND DNA-PROFILING IN PARTICULAR

Thirteenth Session Brasilia, November 22 to 24, 2011

ADDENDUM

USE OF MOLECULAR MARKERS FOR INFRINGEMENT DETECTION IN HYBRID CROPS

Document prepared by experts from the Monsanto Company

Use of Molecular Markers for Misuse Detection in Hybrid Crops

Rogerio Andrade

Monsanto Company Brazil Corn Line Development Breeding Lead

Introduction

- Focus on hybrid crops,
 - Common misconception: *Misuse detection options are limited when considering hybrids.*
- Most common types of germplasm misuse:
 - <u>Direct use</u>; misappropriated inbred parent is used to produce a hybrid,
 - <u>Predominant derivation</u>; slightly different 'copy' of parental line is developed and used in hybrid combination,
 - <u>Derivation from illegaly accessed source</u>; parental line is illegally accessed to start new breeding population, resulting in a new inbred progeny.

Complexity of hybrid genotyping

- ▶ In hybrids, ~ 40-60% of the markers are heterozygotes, making fingerprint analysis and misuse detection more complex.
- Hybrids can be more complex than just single crosses (threeway cross and double-cross hybrids).
- In most countries, inbred parents are not available for DNA fingerprinting, and it would rely on fingerprinting hybrids.

LSR-haplotypes as efficient IP protection tool

- Generally, LSR haplotypes have 3 components:
- 1. Monomorphic region
- 2. Left flanking set of markers
- 3. Right flanking set of markers
- Length of these flanking regions is optimized for strong specificity, trying to keep the region small (<1 cM)
- Some 20-25 LSR haplotypes could be identified for an individual inbred line.

Inbred	Pedigree	LSR-ID#	Chr.	Pos.	41	 ₹	₹	4	45	46	4	8 /	/ \$ /	A10	411	412	A 13	A14	A 15	416	
INBRED A1	P1 x P2	LSR-A01	1	118.8 - 119.2	Χ	0	0	0	0	0	Χ	0	0	0	Χ	0	Χ	0	0	0	
		LSR-A02	2	119.6 - 119.7	Х	0	0	0	0	0	Χ	0	0	0	Х	0	Х	0	0	0	
		LSR-A03	2	120.0 - 120.1	Χ	0	0	0	0	0	Χ	0	0	0	Χ	0	Х	0	0	0	
		LSR-A04	3	156.6 - 158.8	Χ	0	0	0	0	0	Χ	0	0	Х	Х	0	Х	0	0	0	
		LSR-A05	5	134.5 - 135.4	Χ	0	0	0	0	0	0	0	Х	Χ	0	Χ	0	Х	Х	X	
		LSR-A06	7	58.2 - 59.3	Х	0	0	0	0	0	Х	Χ	0	0	0	Х	0	0	Х	Х	
		LSR-A07	7	117.9 - 118.8	Χ	0	0	0	0	0	X	0	Х	0	Х	Χ	Х	0	Х	0	
		LSR-A08	9	133.2 - 134.1	Х	0	0	0	0	0	0	0	Χ	0	0	Х	0	Х	0	0	
							Non related lines					Cycle 1 derivation						Cycle 2 derivation			

• A set of 15-20 LSR haplotypes, evenly distributed accross the genome, is sufficient for accurate tracking of parental origin.

UPOV-BMT meeting_Brasilia, Nov-22, 2011

2. Detection of indirect use (unauthorized access + derivation): Objective: Check hybrids for presence of particular proprietary LSR haplotypes

Proprietary Fingerprinting and LSR haplotypes Database

Fingerprint of LSR-A1 haplotype

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

High-density Fingerprinting of Hybrids (50 K SNP markers):

>> Algorithm to asses fit between hybrid sequence and a particular LSR haplotype.

Hybrid Name	Versus	M1	M2	M3	M4	M5	М6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
HYBRID X	LSR-A1	AT	Η	\dashv	GG	GC	П	GC	CC	AA	AT	AT	AA	GC	CC	GC	GG	TT	AA	т	GC
HYBRID Y	LSR-A1	AT	AA	Η	GC	GC	AA	GC	CC	AA	AT	AT	AA	GC	CC	GC	CC	AT	Η	AA	GC
HYBRID Z	LSR-A1	Ħ	AA	AA	CC	GC	AA	GC	GG	П	AT	AT	TT	GG	CC	GC	GG	AA	AA	AA	CC

- >> Detect suspected presence of some LSR haplotypes in hybrid fingerprint
 - with probability assigned to each LSR window
 - with probability assigned to a derivation act, when fit is ascertained at multiple LSR windows.

UPOV-BMT meeting_Brasilia, Nov-22, 2011

Conclusions

- Misuse detection is becoming very efficient, even when applied in hybrid crops.
- The added complexity in hybrid crops is now manageable through advancement in Information Technology and molecular/sequencing technics (cost, accuracy, throughput, number of markers).
- High-density fingerprinting and Line-Specific-Recombination Haplotypes are powerful tools to detect suspected derivation from inbred lines.
- Fingerprinting information, coupled with algorithm-based data mining, offers solid capability to accurately detect use of hybrid parents.

UPOV-BMT meeting_Brasilia, Nov-22, 2011