

BMT/9/7 ORIGINAL: English DATE: June 1, 2005 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA PROFILING IN PARTICULAR

Ninth Session Washington, D.C., June 21 to 23, 2005

INTERNATIONAL SEED FEDERATION (ISF) OILSEED RAPE ESSENTIALLY DERIVED VARIETIES (EDV) STUDY

Document prepared by the International Seed Federation Working Group

Bernard Le Buanec, Carsten Knaak, Fred van Eeuwijk

UPOV BMT Meeting, June 2005

(ISF

Is it possible to use molecular markers to define a genetic similarity threshold as a trigger to initiate a dispute settlement process in alleged case of essential derivation?

ISF

		First	Phase		
•	estimatio	on of intra-var	ietal versus	inter-varietal	variance
Plant	material	(15 varieties, 5 po	p structures, 5-10	bulk samples/ var	iety, 5 plants/bulk)
Name	Туре	Category	TG Code	Plants/bulk	Analysed bulks
Mikado	winter	DH	No. 02	5	5
Quantum	spring	DH	No. 08	5	10
Pollen	winter	DH	No. 13	5	10
Legend	spring	narrow pop	No. 03	5	5
Westar	spirng	narrow pop	No. 06	5	5
Lirajet	winter	narrow pop	No. 09	5	10
Columbus	winter	pure line	No. 01	5	5
Drakkar	spring	pure line	No. 04	5	5
Bristol	winter	pure line	No. 15	5	10
Dexter	winter	Synthetic	No. 10	5	10
Winner	winter	Synthetic	No. 11	5	10
Karola	winter	Synthetic	No. 12	5	10
Excel	spring	wide pop	No. 05	5	5
Navajo	winter	wide pop	No. 07	5	10
Rainbow	spring	wide pop	No. 14	5	10

	b) usi	ng pooled	sample	s to increa	se discrir	nination po	ower
Dla		tomial	1			1	
Pla	nt ma	iterial (15	varieties, 5	pop structures	, 2 bulk sam	ples/ variety, 40) plants/bulk)
Nomo	Tuno	Catagony	TC Code	ISF TG Ar	nalysis 1	ISF TG An	alysis 2
Mikado	winter		No. 02		NO DUIKS		
Quantum	enring	DH	No. 02	5	10	40	2
Pollen	winter	DH	No. 13	5	10	40	2
Legend	spring	narrow pop	No. 03	5	5	40	2
Westar	spirna	narrow pop	No. 06	5	5	40	2
Liraiet	winter	narrow pop	No. 09	5	10	40	2
Columbus	winter	pure line	No. 01	5	5	40	2
Drakkar	spring	pure line	No. 04	5	5	40	2
Bristol	winter	pure line	No. 15	5	10	40	2
Dexter	winter	Synthetic	No. 10	5	10	40	2
Winner	winter	Synthetic	No. 11	5	10	40	2
Karola	winter	Synthetic	No. 12	5	10	40	2
Excel	spring	wide pop	No. 05	5	5	40	2
Navajo	winter	wide pop	No. 07	5	10	40	2
Rainbow	spring	wide pop	No. 14	5	10	40	2
15 variatio	9				120 samples		30 samples

BMT/9/7 page 7

BMT/9/7 page 8

BMT/9/7 page 9

Third Phase (2)									
Variety sets and market	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
variety sets and marker	.5								
c) maintainance breedir	ng								
ISF3-001 to 0025	4 winter 1 spring	5 lots 5 lots	80 SSR 80 SSR						
d) larger variety sets									
ISF3-W001 to -W050	22 winter	1 x Pool40	80 SSR						
	28 winter	1 x Pool36	74 SSR (database)						
ISF3-S001 to -S050	37 spring	1 x Pool40	80 SSR						
	13 spring	1 x Pool40	74 SSR (database)						
(ISF				16					

BMT/9/7 page 10

Third Phase Results (3)

According to some assumptions on the varieties under code, it seems that seed lots analyzed during other studies present a higher distance, but in any case higher than 0.95 when using the DICE coefficient with all bands

ÍSF

(ISF