

BMT/7/5

ORIGINAL: English

DATE: November 21, 2001

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA-PROFILING IN PARTICULAR

Seventh Session Hanover, Germany, November 21 to 23, 2001

DEVELOPMENT OF MICROSATELLITE MARKERS FOR DUS TESTING IN WHEAT AND OILSEED RAPE

prepared by experts from the United Kingdom

Susan D Freeman, David Lee, Vince Lea, Chris Lowe, Keith J Edwards*, Livia Tommasini*, Paolo Donini, John R Law, James C Reeves and Robert J Cooke

> NIAB, Cambridge, UK, * LARS, Bristol, UK

Work funded by DEFRA

Slide 2

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

- Two Projects 'Development of Molecular Markers for DUS Testing in Oilseed Rape' and '....Wheat'
- Funded by DEFRA (MAFF)
- Started 1999 -
- Preliminary information given at sub-Group meetings (February/March 2001)
- Objective: '..to develop a test set of DNA microsatellite primer pairs for oilseed rape (wheat), to evaluate its application in DUS testing and to devise an operational system for its use..'

WORK PLAN (1)

- obtain and optimise a 'suitable number' of SSR markers the objective is to evaluate at least one marker per chromosome/linkage group
- test the polymorphism of these markers in a group of 10 varieties and select the 'best' SSRs
- assess the uniformity of these 10 varieties with regard to the selected SSRs, by analysis of a number (20-48) of individuals....

Slide 4

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

WORK PLAN (2)

- develop a test set of SSR primer pairs that could be used in DUS testing, independent of detection platform
- evaluate this test set analyse a larger number of current varieties (for both D and U), past and present candidate varieties (for both D and U), plus a parallel running exercise
- examine aspects of stability by analysing different seed lots of varieties.

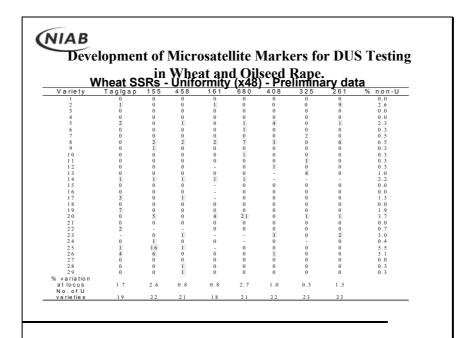
RESULTS - WHEAT:

- Builds on EU project
- 55 primer pairs evaluated (10 varieties)
- 23 chosen (good amplification, easily scored, PIC values >0.45, genome coverage)
- · Used for initial uniformity analysis (10 varieties x 20 individuals)
- 8 (+5) of these chosen for further study (low level of non-U, multiplexing) - D (x40 varieties) and U (x 48 individuals)

Slide 6

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

Selected Wheat SSRS									
	Locus	Chromo- some	No. of alleles*	PIC*	Non- uniformity*	Comments			
1	WMS 325	6DS	4	0.45	0.7 %	Bit faint, but good			
2	WMS 261	2DS	3	0.58	2.7 %	U problem in one variety			
3	WMS 155	3AL	3	0.50	0.7 %	Slightly stuttery, but OK			
4	Taglgap	1BS	4	0.48	0.3 %	Null allele (multiplexing)			
5	WMS 680	6B	2	0.48	2.3 %	OK ,			
6	WMS 458	1DL	3	0.64	0 %	Good			
7	WMS 161	3DS	3	0.60	0.5 %	Some stuttering, but OK			
8	WMS 408	5BL	3	0.58	0 %	Good			
	Reserves								
9	WMS 095	2AS	5	0.74	1.3 %	Stuttering, overlapping alleles			
10	WMS 169	6AL	5	0.74	0.5 %	Stuttering & some smeariness			
11	WMS 018	1BS	4	0.66	1 %	OK			
12	WMS 102	2DS	4	0.66	0 %	Wide size range (120-180 bp) makes multiplexing difficult			
	WMS 186	5AL	4	0.66	0.6 %	U problem in one variety, stuttering, difficult to multiplex			



Wheat SSRs: Distinctness - UK	NL
variotios	

Tai lotioo									
	10 va	rieties	40 varieties						
Locus	PIC	No. of alleles	PIC	No. of alleles					
Taglgap	0.48	4	0.63	4					
WMS 155	0.50	3	0.57	5					
WMS 161	0.60	3	0.66	5					
WMS 261	0.58	3	0.61	5					
WMS 325	0.45	4	0.52	7					
WMS 408	0.58	3	0.66	6					
WMS 458	0.64	3	0.66	3					
WMS 680	0.48	2	0.55	4					

40 varieties can be ~discriminated using 8 SSRs

Slide 8

(NIAB

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

WHEAT - TYPES OF HETEROGENEITY

- Uniform varieties 15/39
- Varieties with 1 off-type at a single locus 8/39
- Varieties with 1 off-type at two or more loci 2/39
- Varieties with >1 off-type at a single locus 5/39
- Varieties with off-types at more than one locus 9/39
- Off-types can be homo- or heterozygous
- Could estimate uniformity of current varieties at selected SSR loci

Slide 10

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

WHEAT - FURTHER WORK

- Complete U analyses (40 varieties x 48 individual x 8 SSRs) + candidates
- Examine aspects of Stability
- Compare results from use of SSRs and conventional tests

RESULTS - OILSEED RAPE:

- NIAB and LARS involved
- 50 primer pairs (BBSRC) evaluated (10 varieties)
- 15 chosen (good amplification, easily scored in both labs, multiplexed, PIC values, genome coverage)
- Used for initial uniformity analysis (10 varieties x 48 individuals)

Slide 12

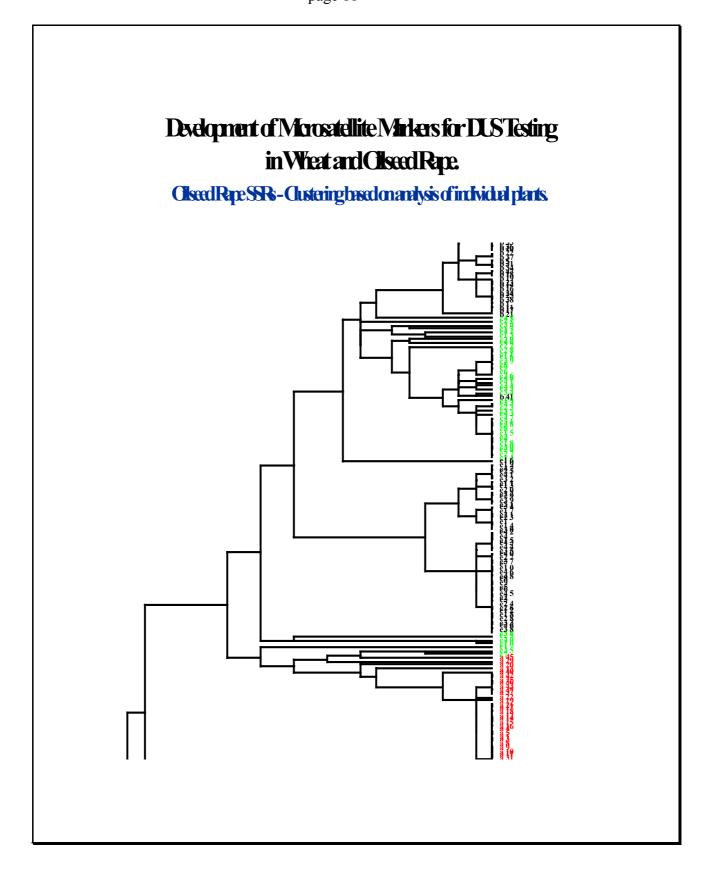
Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

Selected Oilseed Rape SSRs								
Locus	Multiplex	Core Motif	Linkage Group	Allele Size Range (bp)	No. of Bands	% S		
1-Na12 EO2	1	TTG	_	124-129	2	53		
2-Na12 AO8	1	GA	3, 6	162-318	8	66		
3-Ra2 EO3	1	CT	19	262-294	5	38		
4-Na12 AO2	1	CT	7, 10	161-197	7	82		
5-Na12 AO7	1	GT	12	153-166	4	84		
6-Ra2 A11	2	CT	9	243-245	2	80		
7-O110 BO1	2	GA	17	168-188	4	51		
8-Na12 F03	2	GA	17	254-314	6	89		
9-O110 DO3	2	CT	-	91-142	6	97		
10-Ra2 F11	2	CT	12, 13, 19	188-233	5	56		
11-Na12 DO4	3	CA	6	282-288	2	20		
12-Ni4 DO9	3	CT	9	167-207	6	91		
13-Ra2 E11	3	CT	13	166-202	7	93		
14-O110 F11	3	GGC	11	138-150	3	73		
15-O110 HO2	3	GGC	12, 13	184-214	3	87		
Data from LA	RS, from anal	ysis of 10	varieties; %	S = separation	coefficien	t		

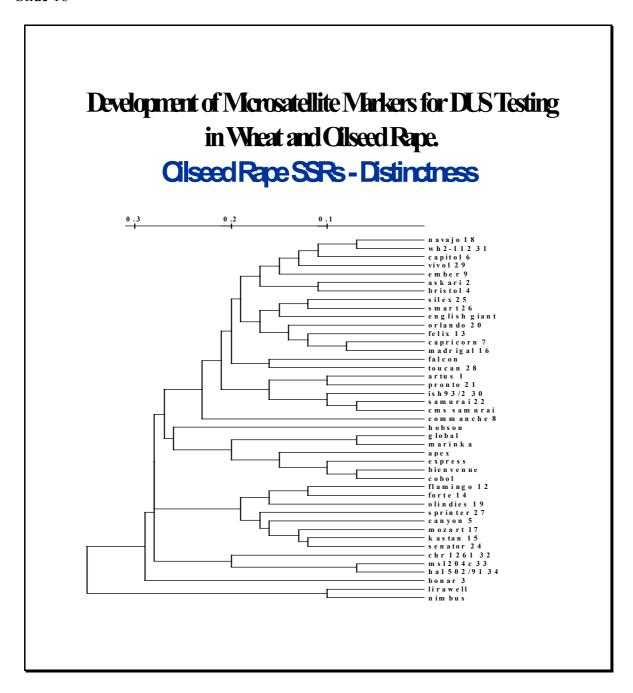
Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape. Oilseed Rape SSRs – Uniformity (x 48)

	Α	В	С	E	F	G	Н	Ĺ	М	N	Ave. non-U per locus
OI10-B01	4%	2%	2%	U	U	21%	U	54%	21%	2%	11%
Na12-E02	17%	2%	4%	U	U	25%	U	2%	21%	2%	7%
Ra2-F11	U	U	U	17%	U	U	U	U	U	2%	2%
Na12-A07	U	2%	32%	U	U	U	U	34%	19%	2%	9%
Na12-A02	4%	50%	27%	40%	U	10%	U	58%	U	65%	25%
Ra2-E03	6%	U	4%	U	U	U	35%	U	U	2%	5%
Ra2-E11	4%	6%	56%	U	6%	33%	U	58%	26%	69%	26%
OI10-D03	4%	21%	27%	U	4%	4%	U	67%	89%	72%	29%
Ra2-A11	8%	2%	4%	21%	U	U	U	U	U	U	4%
Ni4-D09	4%	U	15%	U	U	12%	U	21%	2%	44%	10%
OI10-F11	U	U	4%	U	U	8%	U	48%	6%	35%	10%
Na12-D04	U	U	U	U	U	U	U	58%	U	6%	6%
OI10-H02	U	U	6%	U	U	15%	U	U	24%	15%	6%
Na12-A08	U	4%	27%	U	U	52%	6%	48%	6%	23%	17%
Na12-F03	U	4%	30%	29%	Ü	10%	6%	23%	21%	73%	20%
Ave. non- U per variety	3%	6%	16%	7%	1%	13%	3%	31%	16%	27%	

Slide 14



Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.


HETEROGENEITY IN OILSEED RAPE

- No varieties were completely U at all SSR loci
- Levels of varietal non-uniformity (deviation from the modal pattern) ranged from 1 to 31%(average over all loci)
- Levels of heterogeneity at SSR loci ranged from 6 to 29% (average over all varieties)
- Could estimate uniformity of current varieties at selected SSR loci

Slide 15

Slide 16

(NIAB

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

OILSEED RAPE - FURTHER WORK

- Comparison of NIAB and LARS data showed that 5 of the 15 SSR primer pairs were not sufficiently robust to be useful independently of the detection platform these need to be replaced
- Analyse more varieties (D and U) with the 'new' SSR set
- Analyse as many Common Catalogue varieties as possible
- Carry out 'parallel running' exercise
- Examine aspects of Stability

Slide 18

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

SUMMARY:

- SSRs can readily discriminate between varieties (D?)
- Can select SSRs that are robust and repeatable between labs
- Can estimate 'uniformity' of varieties using SSRs (U?)
- · Some varieties are more 'uniform' than others

SUMMARY (2):

- Some SSR loci appear to be more 'uniform' than others
- Can select SSRs that show low levels of heterogeneity within varieties
- Can select SSRs that provide good levels of D and reflect current levels of uniformity (U?)
- S?

Slide 20

Development of Microsatellite Markers for DUS Testing in Wheat and Oilseed Rape.

- A number of questions have been posed previously, including:
 - Number of markers needed?
 - Mapped vs unmapped markers?
 - Distribution of markers important?
 - Markers related to expressed regions?
 - Distances?
- Now should be looking at what happens next,
 i.e. an action plan how to use markers?

[End of document]