

BMT/12/10 Add.
ORIGINAL: English
DATE: June 1, 2010

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA PROFILING IN PARTICULAR

Twelfth Session Ottawa, Canada, May 11 to 13, 2010

ADDENDUM

EVALUATION OF SIMPLE SEQUENCE REPEAT (SSR) MARKERS ON THE CANADIAN REFERENCE POTATO DNA COLLECTION

Document prepared by experts from Canada

Background

- Project carried from 2006 to 2008 by 4 DUS testing stations;
 - SASA United Kingdom
 - BSA, Germany
 - · COBORU, Poland
 - · Naktuinbouw, the Netherlands

 Resulted in the collection of morphological descriptions representing 733 varieties

Background

- UK and NL had selected 9 microsatellite markers and generated DNA reference samples and SSR profiles representing 900 varieties
- Not counting known mutants, only 8 pairs with identical profile were observed
 - 3 of which were suspected to be either mislabelled, the same or mutant
 - 5 unexplained

Canadian Food Agence canadienne Inspection Agency d'inspection des aliments

Canada

In Canada...

- Plant Breeders rights are granted on DUS data provided by the applicant - no government DUS station
- CFIA Ottawa Plant Laboratory receives potato tubers, leaves or in vitro plantlets for variety verification.
 - Possible mix up during propagation of plantlets
 - · Seed certification inspections
- Since 1997 CFIA is using a molecular method (AFLP) for the verification of potato varieties.

Canadian potato reference DNA collection

- Reference DNA was produced for the validation of the AFLP technique
 - 150 potato varieties originated from two sources
 - 26 and 41 varieties originated from one of the two sources
 - > 700 reference DNA extracts representing 217 varieties
 - DNA extraction procedure CTAB
- Two DNA samples per variety per source were extracted and tested using AFLP.
 - When there was a discrepancy between the fingerprints of the same variety, another set of plantlets was requested from both sources.

Why SSRs?

- Existing potato reference DNA collection
- For testing, SSRs are:
 - Easier to transfer for one laboratory to another
 - Easier and faster to use for diagnostics than AFLP
 - · Easier to automate the scoring process
- Another step toward international harmonisation of molecular identification of crop varieties
- Very promising results as demonstrated at the BMT11

Canadian Food Agence canadienne Inspection Agency d'inspection des alime

Canada

Objectives

- To help evaluate the use of DNA markers to possibly supplement phenotypic characteristics in the distinctness assessment of the future.
- · Assist in the establishment of international guidelines for management and harmonization of molecular information for potatoes
- The SSR profiles representing potato varieties registered in Canada can be use as reference instead of live material to support the VRO
- The SSR markers will provide an improved method for the identification of potato varieties

Canadian Food Agence canadienne d'inspection des aliments

Canada

Method

- 1st step
 - Optimize, test and compare the data from a set of reference varieties common to UK and Canada (34 varieties)
- 2nd step
 - Test all reference DNA extracts from the Canadian reference collection representing 217 varieties

Canadian Food Agence canadienne Inspection Agency d'inspection des aliments

Canada 10

Analysis of 34 varieties common to the United Kingdom and Canada

- All SSR profiles generated from the Canadian references DNA matched closely the U.K profiles
- There were 4 pairs that were not matching
 - 2 were explained by the fact that the U.K. samples were matching other varieties in their database.
 - 2 were cases of different varieties with the same name but registered at different time.
- Overall discrepancies for the presence/absence scoring on 3 alleles
 - E and H for marker 0019
 - D for marker 3009

Canadian Food Agence canadienne d'inspection des aliments

Canada 11

Analysis of the Canadian reference collection representing 217 potato varieties

 SSRs differentiated most of the varieties from the Canadian DNA collection

There were 11 groups that had identical profiles

- 6 pairs and 1 group of 5 suspected or confirmed to be
- 1 pair and 1 group of 3 shared common parents
- · 2 pairs unexplained

There was 1 pair segregating together with 97% similarity corresponding to one allele differences

Analysis of the Canadian reference collection representing 217 potato varieties

- The reference DNA of the 150 varieties from 2 sources mostly generated identical profiles
- There are 2 varieties for which there was 2 profiles corresponding to 1 allele difference
- There were 7 situations where the profile was different between the two sources.
 - 4 pairs from which, one of the two sources was identical to the profile of another varieties and potentially mislabelled.
 - · 3 pairs discrepancies still unresolved

Canadian Food Agence canadienne d'inspection des aliments

Canada 13

Conclusions

- The SSR method established by the EU laboratories was successfully used by the Canadian
- The method differentiated 217 varieties in the Canadian reference DNA collection except 9 confirmed groups
 - The 7 groups are likely mutant and 2 have common parent(s)

Conclusion

- Further investigation is required to assess DNA extraction procedure relative to presence/absence or relative intensities of certain alleles
- Further investigation is required to establish rules to further harmonize the allele scoring
- The method was successfully used to fulfill Canadian Food Inspection Agency official genotyping request

Canadian Food Agence canadienne Inspection Agency d'inspection des aliments

Canada

References

- BMT/11/9 (2008) Construction of an integrated microsatellite and key morphological characteristic database of potato vaireties on the EU common catalogue. Part I: Discussion of morphological and molecular data.
- BMT/11/10 (2008) Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Part II: The database
- Ghislain et al. (2004) Theoretical and Applied Genetics 108: 881-890
- Kawchuck et al. (1996) Molecular and General Genetics 259: 233-245
- Milbourne et al. (1998) American Potato Journal 73: 325-335
- Reid A, Hof L, Esselink D and Vosman B (2008) Potato cultivar genome analysis. In: Plant Pathology Techniques and Protocols (Ed. Burns R) Humana Press

Canadian Food Agence canadienne d'inspection des aliments

Canada