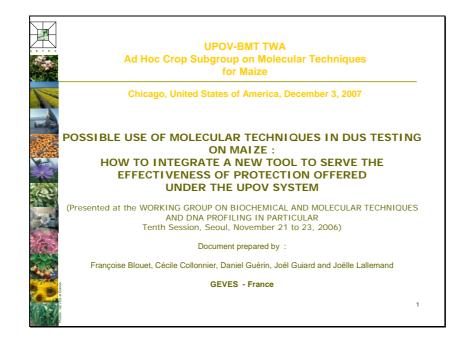


BMT/11/2 Add. ORIGINAL: English DATE: September 30, 2008

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA PROFILING IN PARTICULAR

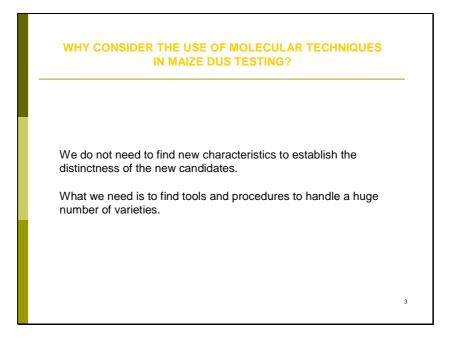

Eleventh Session Madrid, September 16 to 18, 2008

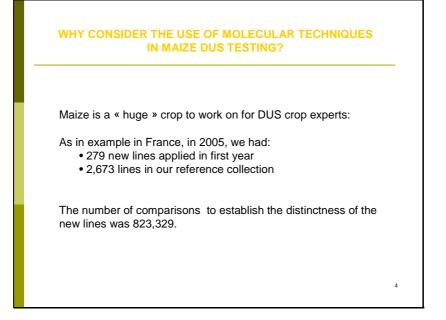
ADDENDUM

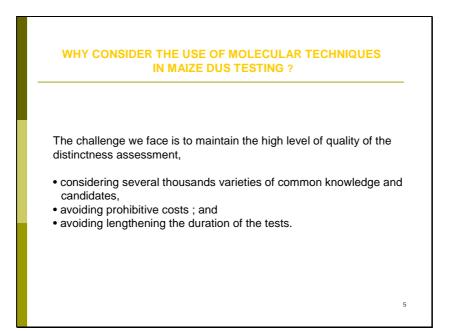
REPORT ON DEVELOPMENTS IN UPOV CONCERNING BIOCHEMICAL AND MOLECULAR TECHNIQUES

Document prepared by experts from the Office of the Union

At the eleventh session of the Working Group on Biochemical and Molecular Techniques and DNA Profiling in Particular (BMT), Mr. Joël Guiard made a presentation on the approach presented in documents BMT/10/14 and BMT-TWA/Maize/2/11 to be put forward for consideration at the BMT Review Group as a potential option for the use of molecular markers in DUS examination (see document BMT/11/2, paragraph 26(d)). A copy of that presentation follows:

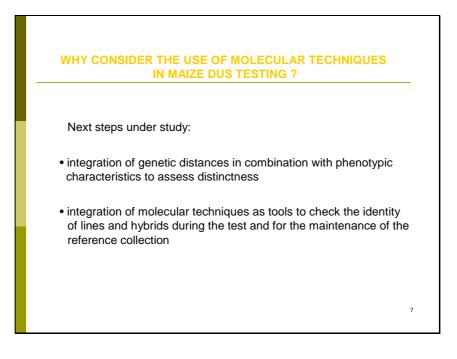

WHY CONSIDER THE USE OF MOLECULAR TECHNIQUES IN MAIZE DUS TESTING ?

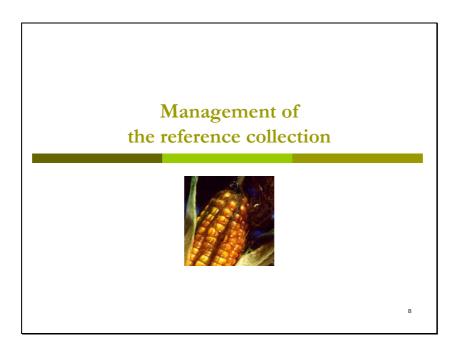

Maize is an « easy » crop to work on for DUS crop experts:

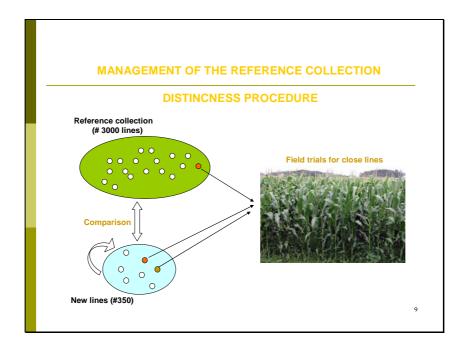

- Large genetic and morphological variability
- High number of reliable and discriminating characteristics
- Low genetic x environment interaction

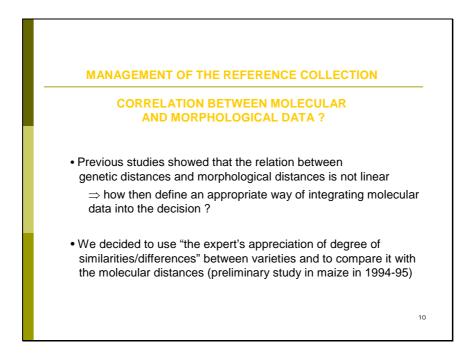
As long as the number of varieties grown in the DUS trials remains reasonable, it is easy to conduct a high quality assessment of new varieties for DUS.

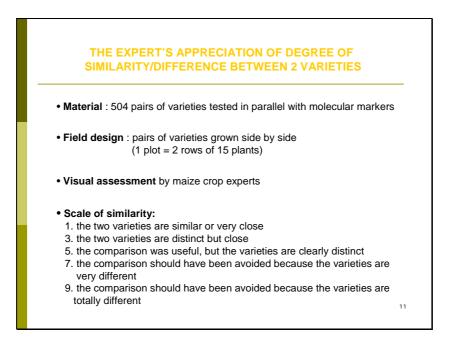
2

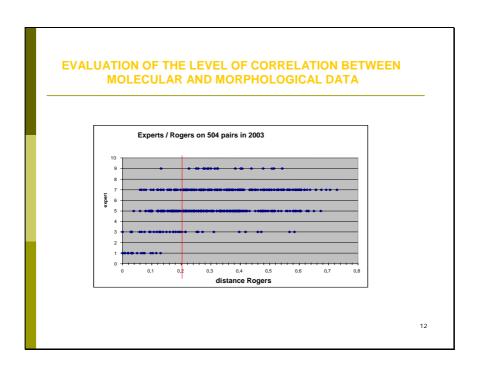

WHY CONSIDER THE USE OF MOLECULAR TECHNIQUES IN MAIZE DUS TESTING?

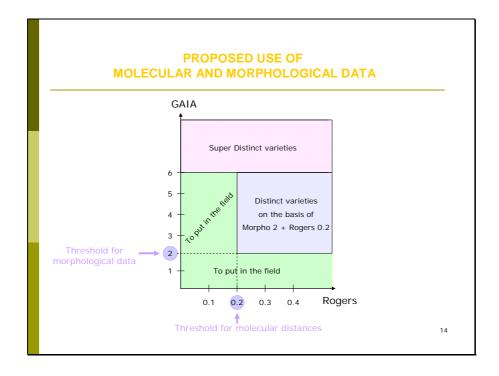

Main changes over the recent past:

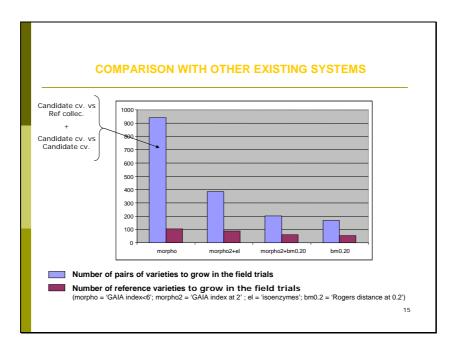

- integration of characteristics derived from electrophoresis in combination with field characteristics
- development of the concept of combination of differences observed on the different characteristics
- development of the GAIA software to select the varieties which need to be grown in the field trials

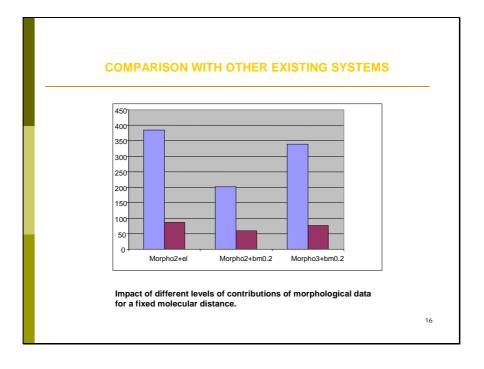

6

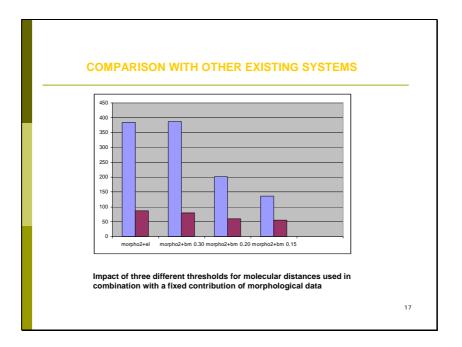

• development of a technical cooperation with Spain and Germany; construction of a common database for phenotypic data

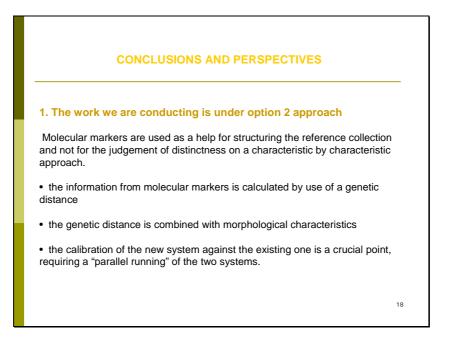


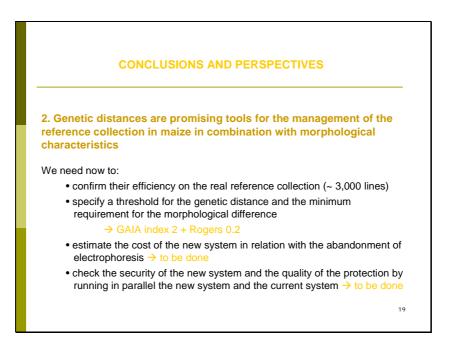


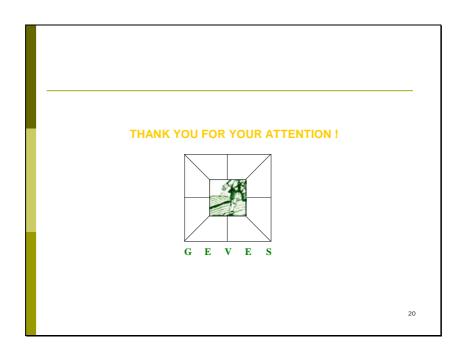







MET	METHODS			Data analysis : Roger's distance					
b		Varieti	es) for	ulation Sof fingerprint 004).		d Geneti			
	Var_A	Var_B	Nb_Loci	Rogers distance	StdDev	Lower boundary	Upper boundary		
	1	10	51	0.544	0.069	0.407	0.681		
	1	103	51	0.382	0.068	0.249	0.516		
	1	104	48	0.609	0.070	0.471	0.747		
	321	204	47	0.021	0.021	020	0.063		
	321	347	50	0.020	0.019	019	0.059		
	83	207	50	0.820	0.054	0.714	0.926]	
						D_R^{ij}	$=\frac{1}{2L}\sum_{l=1}^{L}$	$\sum_{a=1}^{A_l} \left(P_{al}^i - P_{al}^j \right)$	





[End of document]