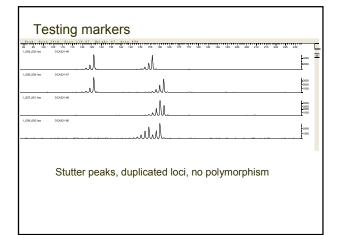
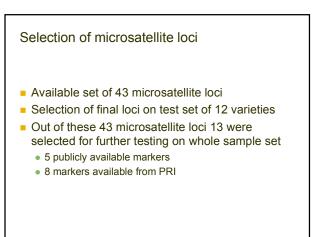


Carnation project:


- Part of the methods development programme for plant breeder's rights research in the Netherlands
 - Develop, improve and evaluate methods that might be used for future DUS testing
- Content determined by LNV, Plantum and NAKtuinbouw
- Executed by PRI in collaboration with NAKtuinbouw


Carnation project:

- Select a set of high quality, highly discriminative STMS markers
- Produce a set of 3 4 multiplexes that will facilitate efficient, cost effective genotyping
- Characterize approx. 150 varieties to show possibilities (material provided by the breeders, collected by NAKtuinbouw)

Microsatellite markers for database

- Different requirements compared to breeding
- Robust and reliable markers needed
- Not all markers are suitable > selection of markers

Multiplex	Locus	Repeat motif	Number of allele
1	DCD224 (Fam)	(CTT)10	7
	DCD105 (Hex)	(TCT)26	9
	DC14 (Ned)	(GAT) ₇ (GCC) ₇	5
2	DC16 (Fam)	(TGA)19	8
	DCF005 (Hex)	(TGTTTGT)5	8
	DINMADSBOX (Ned)	(TA)7	61
3	DC12 (Fam)	(AACCT)3 (CGG)6	2
	DINCARACC (Hex)	(TA)8	7
	DC09 (Ned)	(TGA)11 (GAT)5	10
	DC22 (Fam)*	(TCT)15	3
4	DC06 (Fam)	(AAC) ₆	5
	DC10 (Hex)	(GCG)13.2	7
	DC27 (Ned)	(CGG)5	7

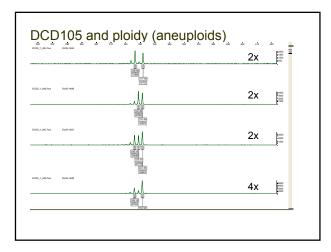
Carnation; crop specific properties

- Several species contributed to carnation: D. caryophyllus, but also amongst others D. plumarius, D. caesius, D. chinensis
- Varieties are diploid, triploid or tetraploid but also aneuploids can be present. Garden varieties may even be hexaploid

Plant material used:

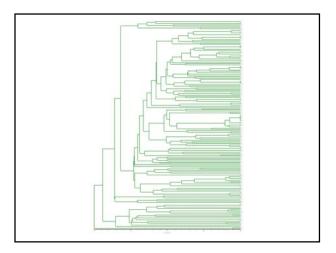
- 12 varieties which were used as reference variety in DUS test of 2005
- 133 varieties provided by 5 breeding companies
 Original varieties and mutant groups
- 27 varieties were analyzed in duplex

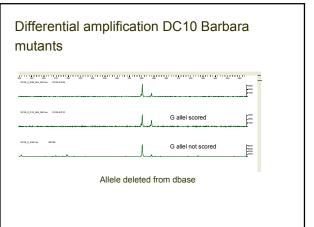
Ploidy level assessment

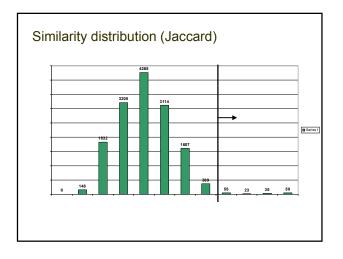

Leave material from all 133 varieties obtained from the breeding companies was analyzed for ploidy level using flow cytometry

- Results:
 - Diploids: 103 (ratio 0.21-0.24)
 - Triploids: 5 (ratio 0.33-0.34)
 - Tetraploids: 25 (0.46-0.52)

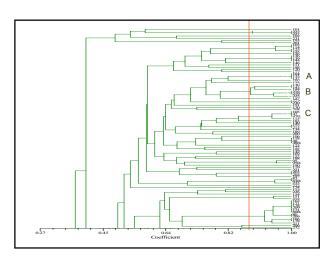
Microsatellite analyses


- Standard multiplex PCR assay, reproducibility test and repeated analyses of failed samples
- Check of samples with unexpected number of alleles
- Dominant scoring of the SSR markers into allelic phenotypes
- Building 1/ 0 excel file
- Similarity matrix (Jaccard) and Tree (UPGMA)



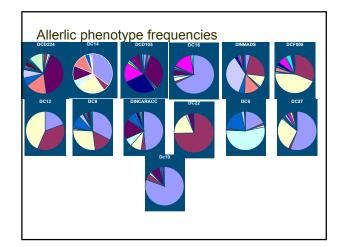

	l	4x	4000 4000 4000 4000
DC65_1,045 fra De65-1065	ll	2x	4000 2000 -1000 -1000
DC05_1_D06 fras Dc05-1006		4x	1000
DO85_1_D07.fea Do85-1067		2x	#000 2000

Locus	Number of	PIC value	Frequency of	Number of
	allelic	based on	most common	different alleles in
	phenotypes	allelic	allelic	most common
		phenotypes	phenotype	allelic phenotype
DCD224	20	0.77	0.42	2
DCD105	17	0.79	0.32	2
DC14	10	0.79	0.35	1
DC16	12	0.52	0.67	1
DCF005	15	0.70	0.45	1
DINMADSBOX	15	0.79	0.35	2
DC12	3	0.63	0.44	2
DC9	17	0.78	0.33	1
DINCARACC	14	0.71	0.49	1
DC22	5	0.42	0.74	1
DC6	9	0.64	0.54	1
DC27	16	0.61	0.55	1
DC10	10	0.34	0.81	1


Analysis of dataset

- Analysis without prior knowledge of relationships between samples
- Varieties with two or less alleles difference joined into groups
- Analysis of the dataset for the consequences of this threshold

Analysis of dataset (excluding duplicates)


Based on threshold 19 groups were identified:

- Six groups consisted of a variety put into dataset twice or were also present in testset
- Ten known mutant groups were identified
- 3 groups that could not be explained with the information available
 - Analysis of new material from varieties gave identical results

Discriminative power of markers

- 172 varieties tested
- 118 potentially different
- 111 unique pattern (94%)
- Pairwise > 99.9 % can be distinguished

Discriminative power of markers

- Highest probability of identical profile can be calculated based on frequency of most common phenotype from each marker
 - Upper probability of identical pattern in unrelated samples
 - 1 : 625552

Conclusions:

- Genetic variation among carnation varieties seems sufficient to distinguish among varieties for identification purposes using the selected markers
- Some varieties showed more than the expected number of alleles. This may be caused by aneuploidy
- To account for technical variation an threshold of two alleles was used.
- With the threshold used 3 groups of varieties were found that could not be explained with the information available

People involved				
Plant Research International NAKtuinbouw				
 Paul Arens Danny Esselink Yolanda Noordijk Linda Kodde 	Lysbeth HofWillem Wietsma			
Funded by:	The Ministry of Agriculture, Nature and Food quality of the Netherlands			
PLANT RESEARCH INTERNATIONAL WASENINGEN				