

Disclaimer: unless otherwise agreed by the Council of UPOV, only documents that have been adopted by the Council of UPOV and that have not been superseded can represent UPOV policies or guidance.

This document has been scanned from a paper copy and may have some discrepancies from the original document.

Avertissement: sauf si le Conseil de l'UPOV en décide autrement, seuls les documents adoptés par le Conseil de l'UPOV n'ayant pas été remplacés peuvent représenter les principes ou les orientations de l'UPOV.

Ce document a été numérisé à partir d'une copie papier et peut contenir des différences avec le document original.

Allgemeiner Haftungsausschluß: Sofern nicht anders vom Rat der UPOV vereinbart, geben nur Dokumente, die vom Rat der UPOV angenommen und nicht ersetzt wurden, Grundsätze oder eine Anleitung der UPOV wieder.

Dieses Dokument wurde von einer Papierkopie gescannt und könnte Abweichungen vom Originaldokument aufweisen.

Descargo de responsabilidad: salvo que el Consejo de la UPOV decida de otro modo, solo se considerarán documentos de políticas u orientaciones de la UPOV los que hayan sido aprobados por el Consejo de la UPOV y no hayan sido reemplazados.

Este documento ha sido escaneado a partir de una copia en papel y puede que existan divergencias en relación con el documento original.

UPOV

TC/34/5

ORIGINAL: englisch

DATUM: 20. Januar 1998

INTERNATIONALER VERBAND ZUM SCHUTZ VON PFLANZENZÜCHTUNGEN GENF

TECHNISCHER AUSSCHUSS

Vierunddreißigste Tagung Genf, 30. März bis 1. April 1998

HOMOGENITÄTSPRÜFUNG SELBSTBEFRUCHTENDER UND VEGETATIV VERMEHRTER ARTEN UNTER VERWENDUNG VON ABWEICHERN (REVISION VON DOKUMENT TWC/11/16)

vom Verbandsbüro erstelltes Dokument

HOMOGENITÄTSPRÜFUNG SELBSTBEFRUCHTENDER UND VEGETATIV VERMEHRTER ARTEN UNTER VERWENDUNG VON ABWEICHERN

INHALT

ZUSAMMENFASSUNG	3
EINLEITUNG	7
FEHLER BEI DER PRÜFUNG VON ABWEICHERN	3
BEISPIELE	5
Beispiel 1	
Beispiel 2	6
BEISPIEL 3	
Beispiel 4	
EINFÜHRUNG IN DIE TABELLEN UND DARSTELLUNGEN	9
DETAILLIERTE BESCHREIBUNG DER METHODE FÜR EINE EINZIGE PRÜFUNG	11
MEHR ALS EINE EINZIGE PRÜFUNG (PRÜFUNGSJAHR)	12
DETAILLIERTE BESCHREIBUNG DER METHODEN FÜR MEHR ALS EINE EINZIGE PRÜFUNG	10
Kombinierte PrüfungZweiphasenprüfung	
SEQUENZPRÜFUNGEN	14
ANMERKUNG ZU DEN FEHLERN 1. UND 2. ART	14
DEFINITION DER STATISTISCHEN BEGRIFFE UND SYMBOLE	14
TADELLEN LIND DADCTELL LINCEN	1/

ZUSAMMENFASSUNG

- 1. Die Homogenität von Kandidatensorten selbstbefruchtender und vegetativ vermehrter Arten wird in der Regel aufgrund der Zahl von Abweichern beurteilt, die bei Prüfungen aufgezeichnet werden. Die Frage lautet nun: Wie viele Abweicher sollten akzeptiert werden? Diese Anzahl sollte so gewählt werden, daß die Wahrscheinlichkeit der Zurückweisung einer Kandidatensorte, die den Standard dieser Art erfüllt, gering ist. Andererseits sollte auch die Wahrscheinlichkeit der Annahme einer Kandidatensorte, die weit mehr Abweicher hat als der Standard dieser Art, niedrig sein.
- 2. Die hier geschilderten Methoden befassen sich mit dem Problem der Wahl der Zahl der zulässigen Abweicher für verschiedene Standards und Stichprobengrößen, damit die Wahrscheinlichkeit, Fehler zu begehen, bekannt und annehmbar ist. Die Methoden beinhalten die Aufstellung des Standards für die betreffende Art und sodann die Wahl der Stichprobengröße und der Zahl der Abweicher, die den zulässigen Risiken am besten entsprechen.
- 3. Dieses Dokument umreißt außerdem die Verfahren für den Fall, daß mehr als eine einzige Prüfung (beispielsweise mehr als ein Jahr) vorgenommen wird, und erwähnt auch die Möglichkeit der Anwendung von Sequenzprüfungen, um den Prüfungsaufwand so gering wie möglich zu halten. Die Verfahren sollen zum Zeitpunkt der Ausarbeitung neuer oder überarbeiteter Prüfungsrichtlinien angewandt werden, um den Sachverständigen bei der Festlegung einer Strategie für die Prüfung von Abweichern behilflich zu sein.

EINLEITUNG

- 4. Bei der Homogenitätsprüfung aufgrund einer Stichprobe wird stets ein gewisses Risiko bestehen, daß eine falsche Entscheidung getroffen wird. Das Risiko läßt sich durch die Erhöhung der Stichprobengröße verringern, jedoch zu größeren Kosten. Ziel des hier geschilderten statistischen Verfahrens ist es, ein annehmbares Gleichgewicht zwischen den Risiken zu erzielen.
- 5. Das hier geschilderte Verfahren erfordert, daß der Benutzer einen zulässigen Standard für die Art festsetzt (als Populationsstandard bezeichnet), und die geschilderten Methoden ermöglichen es ihm sodann, die Stichprobengröße und die maximale Zahl zulässiger Abweicher für verschiedene Risikoniveaus festzulegen.
- 6. Der Populationsstandard läßt sich als Prozentsatz der zu akzeptierenden Abweicher ausdrücken, falls alle individuellen Pflanzen der Sorte geprüft werden könnten.

FEHLER BEI DER PRÜFUNG VON ABWEICHERN

- 7. Wie bereits erwähnt, wird ein gewisses Risiko vorhanden sein, daß falsche Entscheidungen getroffen werden. Es gibt zwei Arten von Fehlern:
- a) zu erklären, die Sorte sei zu heterogen, wenn sie tatsächlich den Standard der Art erfüllt. Dies ist als "Fehler 1. Art" (F1) bekannt.

- b) zu erklären, die Sorten sei homogen, wenn sie tatsächlich den Standard der Art nicht erfüllt. Dies ist als "Fehler 2. Art" (F2) bekannt.
- 8. Die Fehlerarten lassen sich in folgender Tabelle zusammenfassen

Wahrer Stand der Sorte	Getroffene Entscheidung			
	akzeptiert	zurückgewiesen		
homogen	korrekt akzeptiert	F1		
heterogen	F2	korrekt zurückgewiesen		

9. Die Wahrscheinlichkeit der korrekten Annahme einer homogenen Sorten wird als die Akzeptanzwahrscheinlichkeit bezeichnet und ist mit der Wahrscheinlichkeit von F1 durch folgende Relation verbunden:

"Akzeptanzwahrscheinlichkeit" + "Wahrscheinlichkeit von F1" = 100%

- 10. Die Wahrscheinlichkeit von F2 hängt davon ab, "wie heterogen" die Kandidatensorte ist. Ist sie weit stärker heterogen als der Populationsstandard, ist die Wahrscheinlichkeit von F2 gering, und es besteht eine geringe Wahrscheinlichkeit, daß eine derart heterogene Sorte akzeptiert wird. Ist die Kandidatensorte andererseits nur geringfügig heterogener als der Standard, besteht eine hohe Wahrscheinlichkeit von F2. Die Wahrscheinlichkeit, eine derartige Sorte zu akzeptieren, ist groß und nähert sich der Akzeptanzwahrscheinlichkeit in dem Maße, wie sich die Kandidatensorte dem Populationsstandard nähert (doch die diesbezügliche Exaktheit wird ebenfalls immer geringer sein).
- 11. Da die Wahrscheinlichkeit von F2 davon abhängt, "wie heterogen" die Kandidatensorte ist, ist es erforderlich, einen gewissen Heterogenitätsgrad anzunehmen, bevor diese Wahrscheinlichkeit berechnet werden kann. Hier wird die Wahrscheinlichkeit von F2 für drei verschiedene Heterogenitätsgrade berechnet: für das 2-, 5- und 10fache des Populationsstandards.
- 12. Im allgemeinen wird die Wahrscheinlichkeit, Fehler zu begehen, durch die Erhöhung der Stichprobengröße verringert und umgekehrt durch die Verringerung der Stichprobengröße erhöht.
- 13. Für eine gegebene Stichprobengröße läßt sich das Gleichgewicht zwischen den beiden Fehlern durch die Änderung der Zahl der zulässigen Abweicher verändern.
- 14. Wird die Zahl der zulässigen Abweicher erhöht, ist die Wahrscheinlichkeit von F1 geringer, die Wahrscheinlichkeit von F2 indessen höher. Wird andererseits die Zahl der zulässigen Abweicher gesenkt, ist die Wahrscheinlichkeit von F1 höher, während die Wahrscheinlichkeit von F2 geringer wird.
- 15. Durch die Zulassung einer sehr hohen Zahl von Abweichern ist es möglich, die Wahrscheinlichkeit von F1 äußerst gering (oder praktisch gleich Null) zu halten. Allerdings wird dann die Wahrscheinlichkeit von F2 (unannehmbar) hoch. Wird nur eine sehr geringe Zahl von Abweichern zugelassen, ist das Ergebnis eine geringe Wahrscheinlichkeit von F2 und eine (unannehmbar) hohe Wahrscheinlichkeit von F1. Dies wird durch Beispiele veranschaulicht.

BEISPIELE

Beispiel 1

16. Die Erfahrung zeigt, daß ein angemessener Standard für die betreffende Art 1% ist. Somit ist der Populationsstandard 1%. Ferner wird angenommen, daß eine einzige Prüfung mit höchstens 60 Pflanzen vorgenommen wird. Aus den Tabellen 4, 10 und 16 werden folgende Pläne ermittelt:

Plan	Stichprobengröße	Akzeptanz- wahrscheinlichkeit	Maximale Zahl von Abweichern
a	60	90%	2
b	53	90%	1
С	60	95%	2
d	60	99%	3

17. Aus den Darstellungen 4, 10 und 16 werden folgende Wahrscheinlichkeiten von F1 und F2 für verschiedene Prozentsätze von Abweichern ermittelt (bezeichnet als P₂, P₅ und P₁₀ für das 2-, 5- und 10fache des Populationsstandards).

Plan	Stich- probengröße	Maximale Zahl von Abweichern	Fehlerwahrscheinlichkeiten			
			Fl		F2	
				$P_2 = 2\%$	P ₅ = 5%	$P_{10} = 10\%$
a	60	2	2	88	42	5
b	53	1	10	71	25	3
С	60	2	2	88	42	5
d	69	3	0,3	97	65	14

18. Die Tabelle listet vier verschiedene Pläne auf, und diese sollten untersucht werden, um festzustellen, ob einer davon für die Verwendung geeignet ist. (Die Pläne a und c sind identisch, da es keinen Plan für eine Stichprobengröße von 60 mit einer Wahrscheinlichkeit von F1 zwischen 5 und 10% gibt). Wird entschieden zu gewährleisten, daß F1 äußerst gering sein sollte (Plan d), wird die Wahrscheinlichkeit von F2 für eine Sorte mit 2, 5 bzw. 10% Abweichern äußerst hoch (97, 65 und 14%). Das optimale Gleichgewicht zwischen den beiden Fehlerarten scheint durch die Zulassung eines Abweichers in einer Stichprobe von 53 Pflanzen (Plan b) erzielt zu werden.

Beispiel 2

- 19. In diesem Beispiel wird eine Art untersucht, bei der der Populationsstandard auf 2% angesetzt ist und die Zahl der für die Prüfung verfügbaren Pflanzen lediglich 6 beträgt.
- 20. Unter Verwendung der Tabellen und Darstellungen 3, 9 und 15 werden folgende Pläne a-d ermittelt:

Plan	Stich- proben- größe	Akzeptanz- wahrschein- lichkeit	Maximale Zahl von Abweichern	Fehlerwahrscheinlichkeit			
				Fl		F2	
					P ₂ = 4%	$P_5 = 10\%$	$P_{10} = 20\%$
a	6	90	1	0,6	98	89	66
ь	5	90	0	10	82	59	33
С	6	95	1	0,6	98	89	66
d	6	99	1	0,6	98	89	66
е	6		0	11	78	53	26

- 21. Plan e der Tabelle wird ermittelt, indem die nachstehend in diesem Dokument angegebenen Formeln (1) und (2) angewandt werden.
- 22. Dieses Beispiel illustriert die Schwierigkeiten, auf die man stößt, wenn die Stichprobengröße äußerst gering ist. Die Wahrscheinlichkeit, eine heterogene Sorte irrtümlicherweise zu akzeptieren, ist für alle möglichen Situationen hoch. Selbst wenn alle fünf Pflanzen homogen sein müssen, damit eine Sorte akzeptiert wird (Plan b), beträgt die Wahrscheinlichkeit, eine Sorte mit 20% Abweichern zu akzeptieren, noch immer 33%.
- 23. Es ist anzumerken, daß ein Plan, in dem alle sechs Pflanzen homogen sein müssen (Plan e), etwas geringere Wahrscheinlichkeiten für F2 ergibt, doch steigt hier die Wahrscheinlichkeit von F1 auf 11%.
- 24. Plan e kann indessen als die beste Option betrachtet werden, wenn lediglich sechs Pflanzen bei einer einzigen Prüfung einer Art, für die der Populationsstandard auf 2% angesetzt wurde, verfügbar sind.

Beispiel 3

- 25. In diesem Beispiel wird neuerlich die Situation in Beispiel 1 betrachtet, jedoch unter der Annahme, daß die Daten von zwei Jahren verfügbar sind. Der Populationsstandard beträgt somit 1% und die Stichprobengröße 120 Pflanzen (60 Pflanzen in jedem der beiden Jahre).
- 26. Folgende Pläne und Wahrscheinlichkeiten werden aus den Tabellen und Darstellungen 4, 10 und 16 ermittelt:

Plan	Stich- proben- größe	Akzeptanz- wahrschein- lichkeit	Maximale Zahl von Abweichern	Fehlerwahrscheinlichkeit			
				F1		F2	
					$P_2 = 2\%$	$P_5 = 5\%$	$P_{10} = 10\%$
a	120	90	3	3	78	15	<0,1
b	110	90	2	10	62	8	<0,1
С	120	95	3	3	78	15	<0,1
d	120	99	4	0,7	91	28	1

- 27. Hier läßt sich das optimale Gleichgewicht zwischen den beiden Fehlerarten mit Plan c erzielen, d. h. nach zwei Jahren Akzeptanz von insgesamt drei Abweichern unter 120 geprüften Pflanzen.
- 28. Im anderen Falle läßt sich ein zweiphasiges Prüfungsverfahren aufstellen. Ein derartiges Verfahren läßt sich für diesen Fall ermitteln, indem die nachstehend in diesem Dokument angeführten Formeln (3) und (4) angewandt werden.
- 29. Folgende Pläne lassen sich ermitteln:

Plan	Stichproben- größe	Akzeptanz- wahrschein- lichkeit	Größte Zahl für die Akzeptanz nach Jahr 1	Größte Zahl vor der Zurückweisung im Jahr 1	Größte nach 2 Jahren zu akzeptierende Zahl
е	60	90	nie zu akzeptieren	2	3
f	60	95	nie zu akzeptieren	2	3
g	60	99	nie zu akzeptieren	3	4
h	58	90	1	2	2

30. Unter Anwendung der Formeln (3), (4) und (5) lassen sich folgende Fehlerwahrscheinlichkeiten ermitteln:

Plan	Fehlerwahrscheinlichkeit				Wahrschein- lichkeit der Prüfung in einem 2. Jahr
	F1		F2		
		P ₂ = 2%	$P_5 = 5\%$	$P_{10} = 10\%$	
e	4	75	13	0,1	100
f	4	75	13	0,1	100
g	1	90	27	0,5	100
h	10	62	9	0,3	36

31. Die Pläne e und f (die identisch sind) ergeben eine Wahrscheinlichkeit von 4% für die Zurückweisung einer homogenen Sorte und eine Wahrscheinlichkeit von 13% für die Akzeptanz einer Sorte mit 5% Abweichern. Die Entscheidung lautet:

Die Sorte nie nach einem Jahr akzeptieren

Mehr als 2 Abweicher im Jahr 1: die Sorte zurückweisen und die Prüfung abbrechen

0 bis und mit 2 Abweicher im Jahr 1: ein 2. Prüfungsjahr einlegen

Höchstens 3 Abweicher nach 2 Jahren: die Sorte akzeptieren Mehr als 3 Abweicher nach 2 Jahren: die Sorte zurückweisen

- 32. Im anderen Falle kann Plan h gewählt werden, doch scheint Plan g eine zu hohe Wahrscheinlichkeit von F2 im Vergleich zur Wahrscheinlichkeit von F1 aufzuweisen.
- 33. Plan h hat den Vorzug, häufig eine endgültige Entscheidung nach der ersten Prüfung (Prüfungsjahr) zuzulassen, doch ist infolgedessen die Wahrscheinlichkeit von F1 höher.

Beispiel 4

- 34. In diesem Beispiel wird angenommen, daß der Populationsstandard 3% beträgt und daß in jedem der beiden Prüfungsjahre je 8 Pflanzen verfügbar sind.
- 35. Aus den Tabellen und Darstellungen 2, 8 und 14 geht hervor:

Plan	Stichproben- größe	Akzeptanz- wahrschein- lichkeit	Maximale Zahl von Abweichern	Fehlerwahrscheinlichkeit			
				F1		F2	
					$P_2 = 6\%$	$P_5 = 15\%$	$P_{10} = 30\%$
a	16	90	1	8	78	28	3
b	16	95	2	1	93	56	10
С	16	99	3	0,1	99	79	25

36. Hier läßt sich das optimale Gleichgewicht zwischen den beiden Fehlerarten mit Plan a erzielen.

EINFÜHRUNG IN DIE TABELLEN UND DARSTELLUNGEN

- 37. In den Tabellen 1 bis 21 ist die maximale Zahl der Abweicher und die entsprechende Stichprobengröße für verschiedene Kombinationen des Populationsstandards und der Akzeptanzwahrscheinlichkeit für eine einzige Prüfung angegeben. Eine Übersicht über die Tabellen und Darstellungen ist in Tabelle A auf der nächsten Seite enthalten.
- 38. Für jede maximale Zahl von Abweichern (k) ist die entsprechende obere und untere Grenze der Stichprobengröße (n) aufgelistet. In Tabelle 1 beispielsweise liegt die entsprechende Stichprobengröße n für k=2 in der Größenordnung von 11 bis 22 und für k=10 bei 126 bis 141.
- 39. Für kleine Stichprobengrößen werden dieselben Informationen in den Darstellungen 1 bis 18 mit dem tatsächlichen Risiko der Zurückweisung einer homogenen Sorte und der Wahrscheinlichkeit der Akzeptanz einer Sorte mit einem wahren Anteil von Abweichern, der das 2-, 5-, und 10fache des Populationsstandards beträgt, graphisch dargestellt. (Um die Lektüre der Darstellung zu erleichtern, werden die Risiken für die individuellen Stichprobengrößen durch Linien verbunden, obwohl die Wahrscheinlichkeit nur für jede individuelle Stichprobengröße berechnet werden kann.)

Tabelle A. Übersicht über die Tabellen und Darstellungen 1 bis 18.

Populationsstandard %	Akzeptanzwahrscheinlichkeit %	Vgl. Tabelle und Darstellung Nr.
10	>90	19
10	>95	20
10	>99	21
5	>90	1
5	>95	7
5	>99	13
3	>90	2
3	>95	8
3	>99	14
2	>90	3
2	>95	9
2	>99	15
1	>90	4
1	>95	10
1	>99	16
0,5	>90	5
0,5	>95	11
0,5	>99	17
0,1	>90	6
0,1	>95	12
0,1	>99	18

- 40. Zur Verwendung der Tabellen wird folgendes Verfahren vorgeschlagen:
 - a) den entsprechenden Populationsstandard wählen.
- b) die verschiedenen entsprechenden Entscheidungspläne niederschreiben (Kombinationen der Stichprobengröße und der maximalen Zahl der Abweicher), wobei die Wahrscheinlichkeiten von F1 und F2 den Darstellungen entnommen werden.
- c) den Entscheidungsplan mit dem besten Gleichgewicht zwischen den Fehlerwahrscheinlichkeiten wählen.
- 41. Die Verwendung der Tabellen und Darstellungen wird im Abschnitt mit den Beispielen veranschaulicht.

DETAILLIERTE BESCHREIBUNG DER METHODE FÜR EINE EINZIGE PRÜFUNG

- 42. Die mathematischen Berechnungen beruhen auf der binomischen Verteilung, und in der Regel werden folgende Begriffe bezüglich der Berechnungen verwendet:
- a) Der in einem spezifischen Fall zu akzeptierende Prozentsatz von Abweichern wird als "Populationsstandard" (oder Nominalstandard) bezeichnet und mit dem Buchstaben P dargestellt.
- b) Die "Akzeptanzwahrscheinlichkeit" ist die Wahrscheinlichkeit, eine Sorte mit P% Abweichern zu akzeptieren. Da die Zahl der Abweicher diskret ist, wird jedoch die tatsächliche Wahrscheinlichkeit der Akzeptanz einer homogenen Sorte stets größer als oder gleich wie die "Akzeptanzwahrscheinlichkeit" sein. Die Akzeptanzwahrscheinlichkeit wird in der Regel mit 100α bezeichnet, wobei α die Wahrscheinlichkeit der Zurückweisung einer Sorte mit P% Abweichern ist. In der Praxis werden zahlreiche Sorten weniger als P% Abweicher haben, und somit wird F1 für diese Sorten tatsächlich kleiner als α sein.
- c) Die Größe der geprüften Zufallsstichprobe wird Stichprobengröße genannt und mit n bezeichnet.
- d) Die maximale Zahl der Abweicher in einer Zufallsstichprobe der Größe n wird als k bezeichnet.
- e) Die Wahrscheinlichkeit der Akzeptanz einer Sorte mit einem zu hohen Prozentsatz, P_q %, von Abweichern wird mit dem Buchstaben β oder mit β_q bezeichnet.
 - f) Die mathematischen Formeln für die Berechnung der Wahrscheinlichkeiten sind

$$\alpha = 100 - 100 \sum_{i=0}^{k} \binom{n}{i} P^{i} (1 - P)^{n-i}$$
 (1)

$$\beta_{q} = 100 \sum_{i=0}^{k} \binom{n}{i} P_{q}^{i} (1 - P_{q})^{n-i}$$
 (2)

P und Pq sind hier als Proportionen ausgedrückt, d.h. Prozente dividiert durch 100.

MEHR ALS EINE EINZIGE PRÜFUNG (PRÜFUNGSJAHR)

- 43. Häufig wird eine Kandidatensorte während zwei (oder drei) Jahren angebaut. Dann taucht die Frage auf, wie die Informationen über die Heterogenität aus den einzelnen Jahren zu kombinieren sind. Zwei Methoden werden geschildert:
- a) Die Entscheidung nach zwei (oder drei) Jahren treffen, beruhend auf der Gesamtzahl der geprüften Pflanzen und der Gesamtzahl der aufgezeichneten Abweicher. (Kombinierte Prüfung).
- b) Das Ergebnis des ersten Jahres verwenden, um festzustellen, ob die Daten eine klare Entscheidung andeuten (Zurückweisung oder Akzeptanz). Ist die Entscheidung nicht klar, mit dem zweiten Jahr fortfahren und nach dem zweiten Jahr entscheiden. (Zweiphasenprüfung).
- 44. Es gibt indessen einige Alternativen (z.B. kann in jedem Jahr eine Entscheidung getroffen werden, und eine endgültige Entscheidung kann durch die Zurückweisung der Kandidatensorte getroffen werden, wenn diese zu viele Abweicher in beiden (oder in zwei von drei Jahren) aufweist). Ferner gibt es Komplikationen, wenn eine Prüfung von mehr als einem einzigen Jahr durchgeführt wird. Deshalb wird vorgeschlagen, einen Statistiker hinzuziehen, wenn eine Prüfung von zwei (oder mehr) Jahren durchzuführen ist.

DETAILLIERTE BESCHREIBUNG DER METHODEN FÜR MEHR ALS EINE EINZIGE PRÜFUNG

Kombinierte Prüfung

45. Die Stichprobengröße bei Prüfung i ist n_i . Nach der letzten Prüfung haben wir somit die gesamte Stichprobengröße $n = \sum n_i$. Nun wird ein Entscheidungsplan auf genau dieselbe Weise aufgestellt, als ob diese gesamte Stichprobengröße in einer einzigen Prüfung ermittelt worden wäre. So wird die Gesamtzahl der während der Prüfungen aufgezeichneten Abweicher mit der maximalen Zahl der vom gewählten Entscheidungsplan zugelassenen Abweicher verglichen.

Zweiphasenprüfung

46. Die Methode für eine Zweijahresprüfung läßt sich folgendermaßen beschreiben: Im ersten Jahr eine Stichprobe der Größe n nehmen. Die Kandidatensorte zurückweisen, wenn mehr als r₁ Abweicher aufgezeichnet werden, und die Kandidatensorte annehmen, wenn weniger als a₁ Abweicher aufgezeichnet werden. Ansonsten zum zweiten Jahr übergehen und eine Stichprobe der Größe n (wie im ersten Jahr) nehmen und die Kandidatensorte zurückweisen, wenn die Gesamtzahl der in der Zweijahresprüfung aufgezeichneten Abweicher größer als r ist. Andernfalls die Kandidatensorte akzeptieren. Die endgültigen Risiken und die erwartete Stichprobengröße bei einem derartigen Verfahren lassen sich wie folgt berechnen:

$$\alpha = P(K_1 > r_1) + P(K_1 + K_2 > r \mid K_1)$$

= $P(K_1 > r_1) + P(K_2 > r - K_1 \mid K_1)$

$$= \sum_{i=r_{i}+1}^{n} \binom{n}{i} P^{i} (1-P)^{n-i} + \sum_{i=a_{i}}^{r_{i}} \binom{n}{i} P^{i} (1-P)^{n-i} \sum_{j=r-i+1}^{n} \binom{n}{j} P^{j} (1-P)^{n-j}$$
 (3)

$$\beta_{q} = P(K_{1} < a_{1}) + P(K_{1} + K_{2} \le r \mid K_{1})$$

= $P(K_{1} < a_{1}) + P(K_{2} \le r - K_{1} \mid K_{1})$

$$= \sum_{i=0}^{a_{i}-l} \binom{n}{i} P_{q}^{i} (1 - P_{q})^{n-i} + \sum_{i=a_{i}}^{r_{i}} \binom{n}{i} P_{q}^{i} (1 - P_{q})^{n-i} \sum_{j=0}^{r-i} \binom{n}{j} P_{q}^{j} (1 - P_{q})^{n-j}$$
(4)

$$n_{e} = n \left(1 + \sum_{i=a_{I}}^{r_{I}} {n \choose i} P^{i} (1 - P)^{n-i} \right)$$
 (5)

wobei

P = Populationsstandard

 α = Wahrscheinlichkeit von F1 für P

 β_q = Wahrscheinlichkeit von F2 für q P

n_e = erwartete Stichprobengröße

r₁, a₁ und r Entscheidungsparameter sind

 P_q = das qfache des Populationsstandards = q P

K₁ und K₂ die Zahl der im Jahr 1 bzw. im Jahr 2 festgestellten Abweicher sind.

- 47. Die Entscheidungsparameter a_1 , r_1 und r können gemäß folgenden Kriterien gewählt werden:
 - a) α muß weniger als α_0 sein, wobei α_0 der maximale F1 ist, d.h. α_0 ist 100 minus die erforderliche Akzeptanzwahrscheinlichkeit
 - b) β_5 sollte möglichst gering, jedoch nicht kleiner als α_0 sein
 - c) wenn $\beta_5 < \alpha_0$, sollte n_e möglichst gering sein.
- 48. Es stehen allerdings auch andere Strategien zur Verfügung, und es werden hier keine Tabellen/Darstellungen gezeigt, da es mehrere verschiedene Entscheidungspläne geben könnte, die einer bestimmte Risikoserie entsprechen. Es wird vorgeschlagen, einen Statistiker zu konsultieren, wenn eine zweiphasige Prüfung oder andere Sequenzprüfungen erforderlich/erwünscht sind.

SEQUENZPRÜFUNGEN

49. Die obenerwähnte zweiphasige Prüfung ist eine Art Sequenzprüfung, bei der das Ergebnis der ersten Phase bestimmt, ob die Prüfung während einer zweiten Phase fortgesetzt werden muß. Es können auch andere Arten von Sequenzprüfungen angewandt werden. Derartige Prüfungen können in Betracht gezogen werden, wenn die praktische Arbeit erlaubt, daß in bestimmten Phasen der Prüfung von Abweichern Analysen vorgenommen werden. Die Entscheidungspläne für derartige Methoden lassen sich auf unterschiedliche Arten aufstellen, und es wird vorgeschlagen, einen Statistiker hinzuzuziehen, wenn Sequenzmethoden anzuwenden sind.

ANMERKUNG ZU DEN FEHLERN 1. UND 2. ART

50. Da die Zahl der Abweicher diskret ist, können wir in der Regel keine Fehler 1. Art erzielen, die schöne, preselektionierte Zahlen sind. Der Plan a im obigen Beispiel 2 mit 6 Pflanzen zeigte, daß wir kein α von 10% erzielen konnten - unser tatsächliches α betrug 0,6%. Eine Erhöhung der Stichprobengröße wird schwankende $\alpha\Delta$ und $\beta\Delta$ Werte zur Folge haben. Darstellung 3 - als Beispiel - zeigt, daß sich α bei bestimmten Stichprobengrößen seinen Nominalwerten stärker annähert, und dies ist auch die Stichprobengröße, bei der β verhältnismäßig gering ist. Ferner wird auch festgestellt, daß eine Erhöhung der Stichprobengröße für eine feste Akzeptanzwahrscheinlichkeit nicht immer von Vorteil ist. Eine Stichprobengröße von fünf beispielsweise ergibt α = 10% und β_2 = 82%, während eine Stichprobengrößen von sechs α = 0,6% und β_2 = 98% ergibt. Es scheint, daß die Stichprobengrößen, die α -Werte ergeben, die der Akzeptanzwahrscheinlichkeit recht genau entsprechen, die größten in einer Reihe von Stichprobengrößen mit einer genau angegebenen maximalen Zahl von Abweichern sind. So sollten die kleinsten Stichprobengrößen in der Palette von Stichprobengrößen mit einer gegebenen maximalen Zahl von Abweichern vermieden werden.

DEFINITION DER STATISTISCHEN BEGRIFFE UND SYMBOLE

51. Die verwendeten statistischen Begriffe und Symbole sind wie folgt definiert:

Populationsstandard. Der Prozentsatz der zulässigen Abweicher, wenn alle individuellen Pflanzen einer Sorte geprüft werden könnten. Der Populationsstandard wird für die betreffende Art festgesetzt und beruht auf der Erfahrung.

Akzeptanzwahrscheinlichkeit. Die Wahrscheinlichkeit, daß eine Sorte mit P% Abweichern akzeptiert wird. P ist hier der Populationsstandard. Die tatsächliche Wahrscheinlichkeit, daß eine homogene Sorte akzeptiert wird ist stets größer als oder gleich wie die Akzeptanzwahrscheinlichkeit in den Überschriften der Tabellen und Darstellungen. Die tatsächliche Wahrscheinlichkeit, daß eine homogene Sorte akzeptiert wird, läßt sich aus dem Diagramm mit dem Symbol • ersehen. Die Entscheidungspläne werden so definiert, daß die tatsächliche Wahrscheinlichkeit, daß eine homogene Sorte akzeptiert wird, stets größer als oder gleich wie die Akzeptanzwahrscheinlichkeit in der Überschrift der Tabelle ist.

Fehler 1. Art (F1). Der Fehler, eine homogene Sorte zurückzuweisen.

Fehler 2. Art (F2). Der Fehler, eine zu heterogene Sorte zu akzeptieren.

P Populationsstandard

- P_q Der angenommene wahre Prozentsatz von Abweichern in einer heterogenen Sorte. $P_q = q P$.
- n Stichprobengröße
- k maximale Zahl der zulässigen Abweicher
- α Wahrscheinlichkeit von F1
- β Wahrscheinlichkeit von F2

TABELLEN UND DARSTELLUNGEN

Tabelle und Darstellung 1:

58

59

974- 992

993-1010

Populationsstandard = 5%

Akzeptanzwahrscheinlichkeit ≥90%

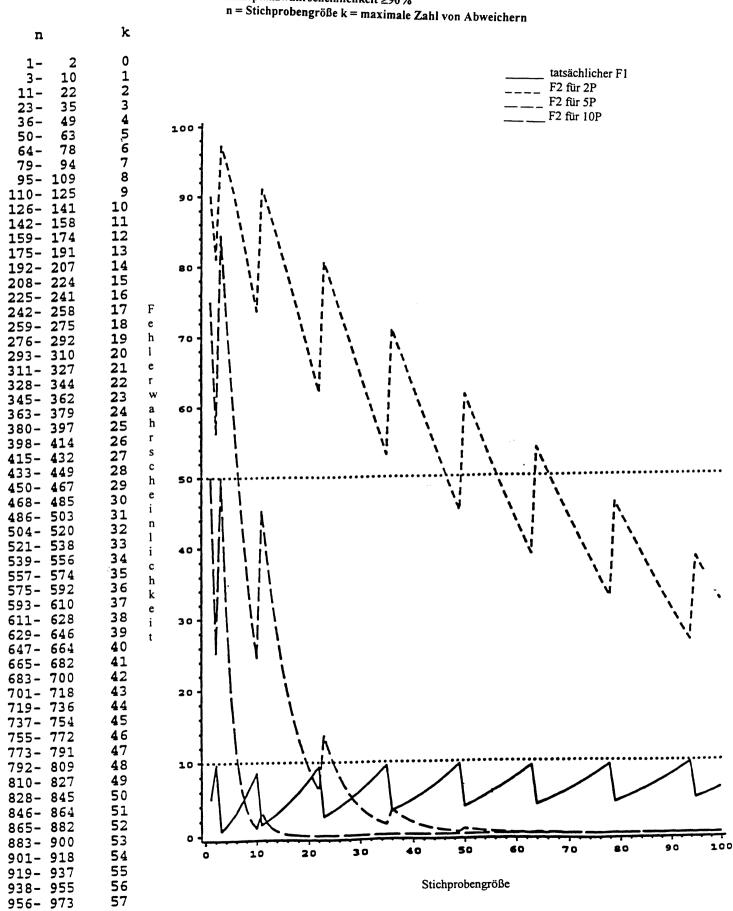


Tabelle und Darstellung 2:

Populationsstandard = 3% Akzeptanzwahrscheinlichkeit ≥90% n = Stichprobengröße, k = maximale Zahl von Abweichern

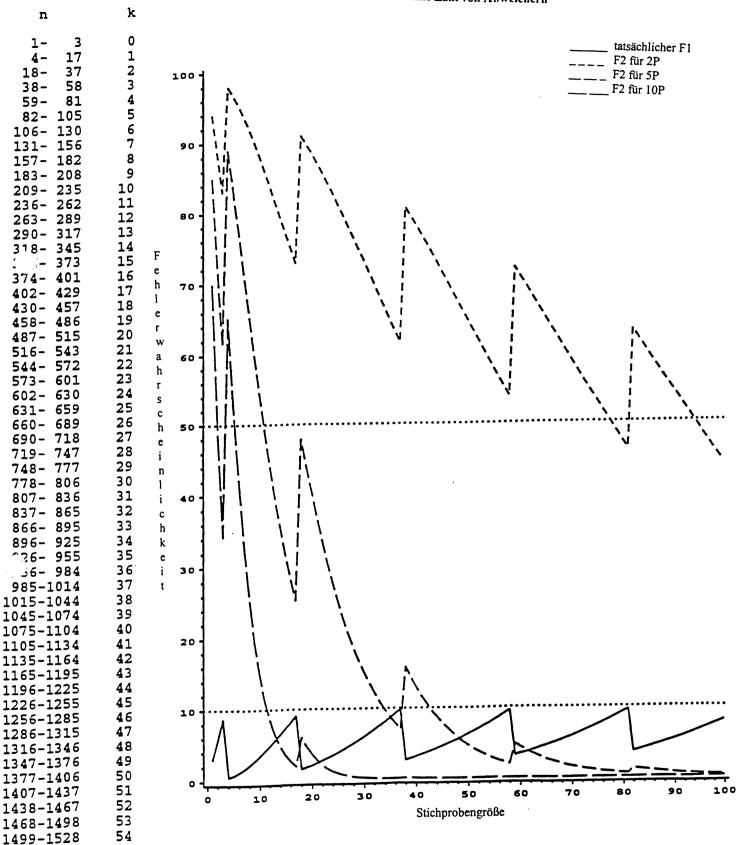


Tabelle und Darstellung 3: Populationsstandard = 2%
Akzeptanzwahrscheinlichkeit ≥90%

n = Stichprobengröße, k = maximale Zahl von Abweichern

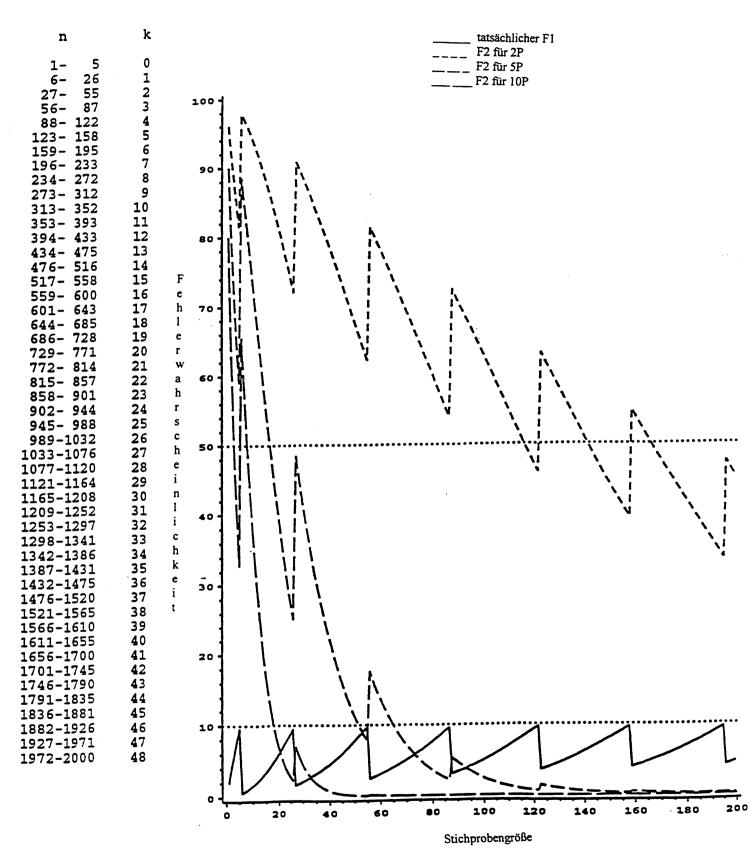


Tabelle und Darstellung 4:

Populationsstandard = 1% Akzeptanzwahrscheinlichkeit ≥90% n = Stichprobengröße, k = maximale Zahl von Abweichern

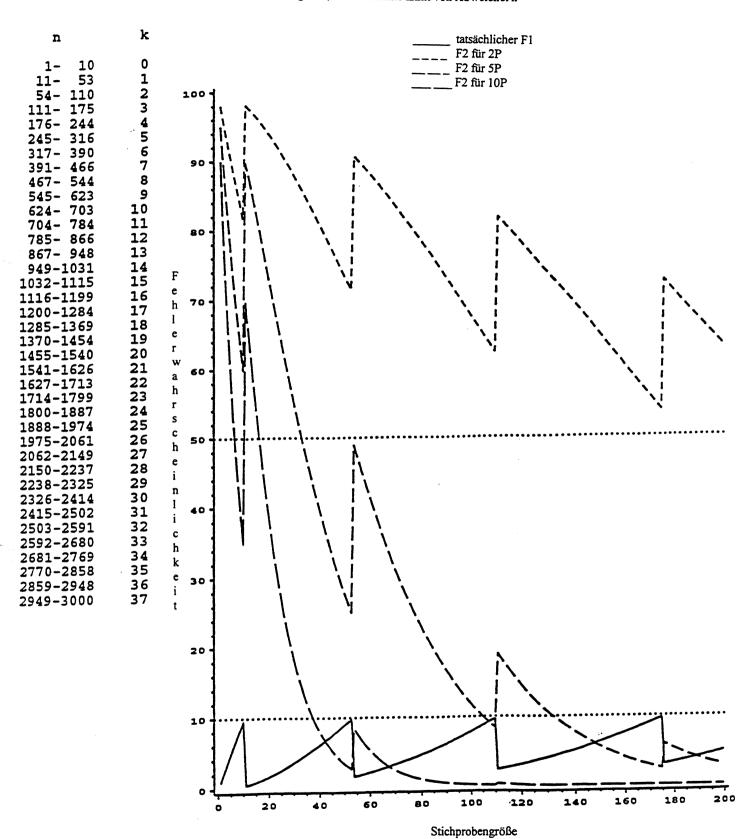


Tabelle und Darstellung 5:

Populationsstandard = 0,5% Akzeptanzwahrscheinlichkeit ≥90% n = Stichprobengröße k = maximale Zahl von Abweichern

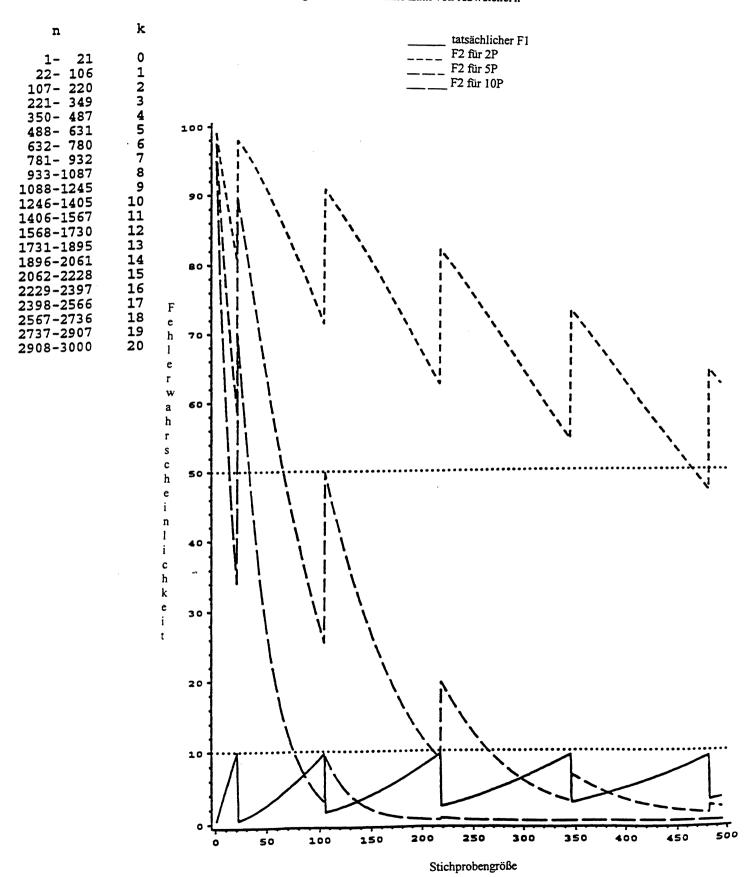
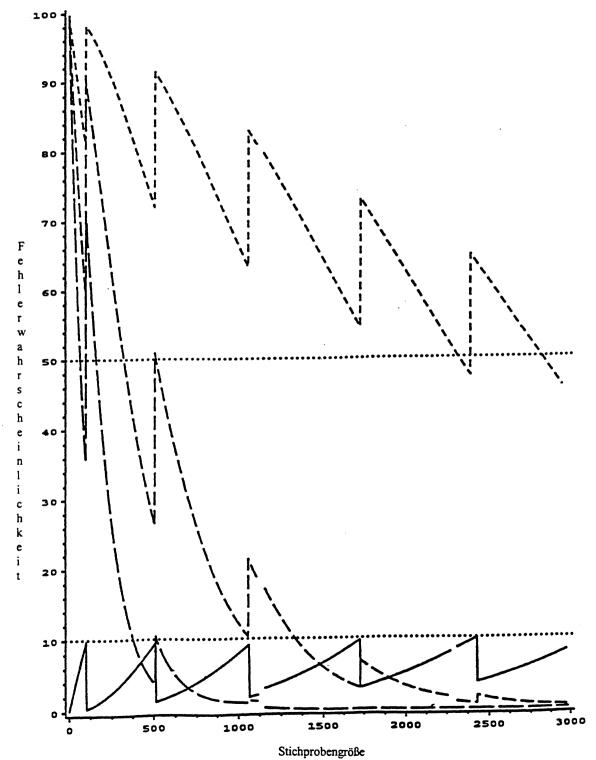



Tabelle und Darstellung 6:

Populationsstandard = 0,1% Akzeptanzwahrscheinlichkeit ≥90% n = Stichprobengröße, k = maximale Zahl von Abweichern

, n	k	tatsächlicher F1
1- 105 106- 532 533-1102 1103-1745 1746-2433 2434-3000	0 1 2 3 4 5	F2 für 2P F2 für 5P F2 für 10P

963- 980

981- 998

60 61

Tabelle und Darstellung 7: Populationsstandard = 5%
Akzeptanzwahrscheinlichkeit ≥95%

n = Stichprobengröße, k = maximale Zahl von Abweichern k n tatsächlicher F1 0 17 1-F2 für 2P 1 2-F2 für 5P 234567 8-16 F2 für 10P 17-28 29-40 41-53 100 54-67 68-81 8 82-95 9 96- 110 10 111- 125 11 126-140 12 155 141-13 156-171 14 172- 187 15 80 188- 203 16 204- 219 17 220- 235 F 236- 251 18 е 19 252- 268 h 70 20 269- 284 l 21 22 23 285- 300 e 301- 317 r 318- 334 w 24 335- 351 a 60 25 352-367 h 26 368- 384 r 385-27 401 s 28 402- 418 С 29 419- 435 h 50 30 436- 452 е 31 453- 469 i 32 470- 487 n 33 488- 504 1 34 40 505- 521 i 35 522- 538 С 36 539- 556 h 37 557- 573 k 38 574- 590 е 591- 608 609- 625 39 30 i 40 41 626- 643 42 644- 660 661- 678 43 20 44 679- 696 45 697- 713 46 714- 731 732- 748 47 48 749- 766 10 49 767- 784 50 785- 802 51 803-819 52 820-837 53 838- 855 54 856- 873 100 50 90 40 30 20 10 55 874- 891 Stichprobengröße 56 892- 909 57 910- 926 58 927- 944 59 945- 962

Tabelle und Darstellung 8: Populationsstandard = 3%
Akzeptanzwahrscheinlichkeit ≥95%

n = Stichprobengröße, k = maximale Zahl von Abweichern k n tatsächlicher F1 0 1-F2 für 2P 1 12 2-F2 für 5P 27 2 3 13-F2 für 10P 46 28-**4** 5 47-66 88 67-6 7 89- 110 111- 134 100 8 135- 158 9 159- 182 10 183- 207 11 208- 232 12 233- 258 13 259- 284 14 35- 310 15 311-337 16 363 338-17 364- 390 13 417 391-19 418-444 20 472 445-21 473- 499 h 70 22 500- 527 1 23 528- 554 e 555- 582 24 r 25 583- 610 w 26 611- 638 a 60 27 639- 666 h 28 667- 695 r 29 696- 723 s 724- 751 30 С 752- 780 31 50 h V 32 781- 809 е 33 810- 837 1 i 838- 866 34 n 867-895 35 1 896- 924 36 40 i 925- 952 37 С 953- 981 38 h 39 982-1010 k 40 1011-1040 30 41 1041-1069 i 42 1070-1098 43 1099-1127 44 1128-1156 45 1157-1186 20 1187-1215 46 47 1216-1244 1245-1274 48 1275-1303 49 50 1304-1333 10 51 1334-1362 52 1363-1392 53 1393-1422 1423-1451 54 1452-1481 55 100 80 90 1482-1511 56 50 60 70 40 20 30 10 57 1512-1541 Stichprobengröße 1542-1570 58 59 1571-1600

60

61

1601-1630 1631-1660

Tabelle und Darstellung 8 (Fortsetzung):

1661-1690	62
1691-1720	63
1721-1750	54
1751-1780	65
1781-1810	66
1811-1840	67
1841-1870	68
1871-1900	69
1901-1930	70
1931-1960	71
1961-1990	72
1991-2000	73

Tabelle und Darstellung 9:

Populationsstandard = 2% Akzeptanzwahrscheinlichkeit ≥95% n = Stichprobengröße, k = maximale Zahl von Abweichern

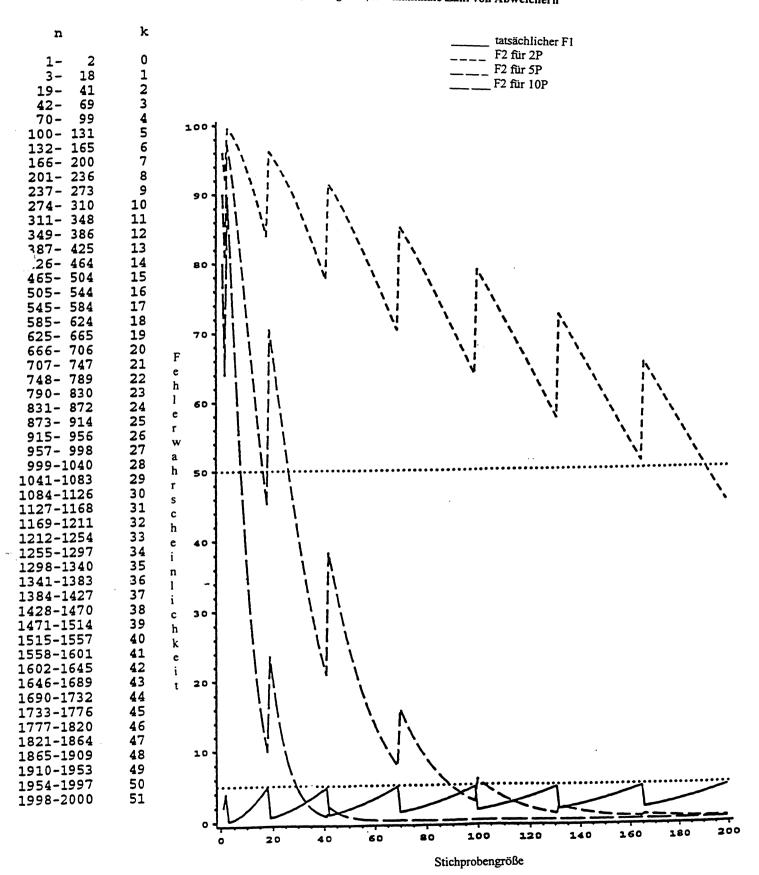


Tabelle und Darstellung 10:

Populationsstandard = 1% Akzeptanzwahrscheinlichkeit ≥95% n = Stichprobengröße, k = maximale Zahl von Abweichern

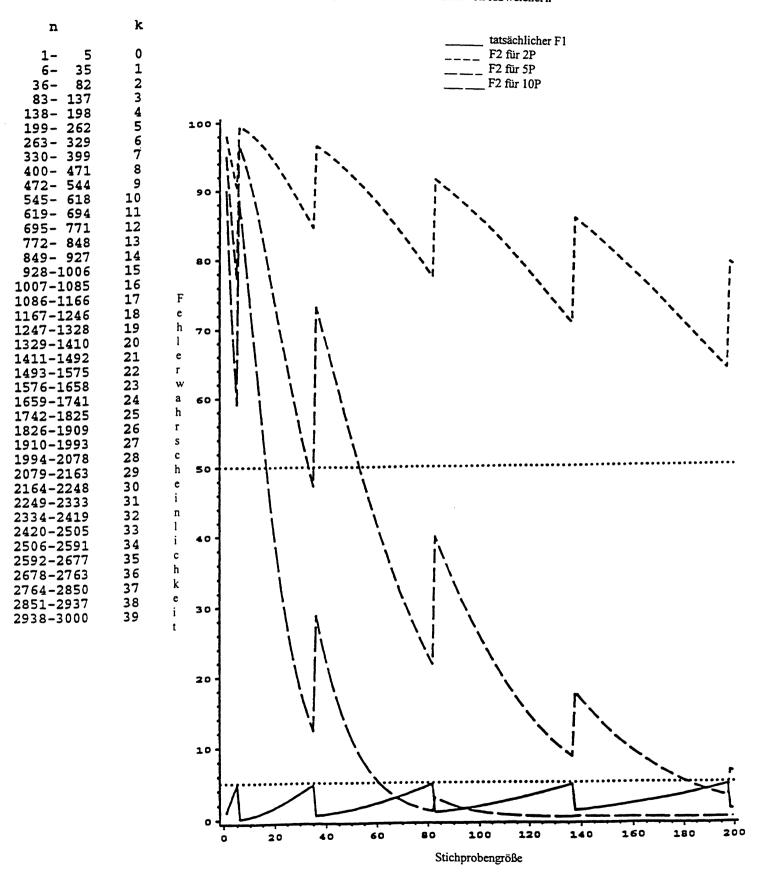


Tabelle und Darstellung 11:

Populationsstandard = 5% Akzeptanzwahrscheinlichkeit ≥95% n = Stichprobengröße, k = maximale Zahl von Abweichern

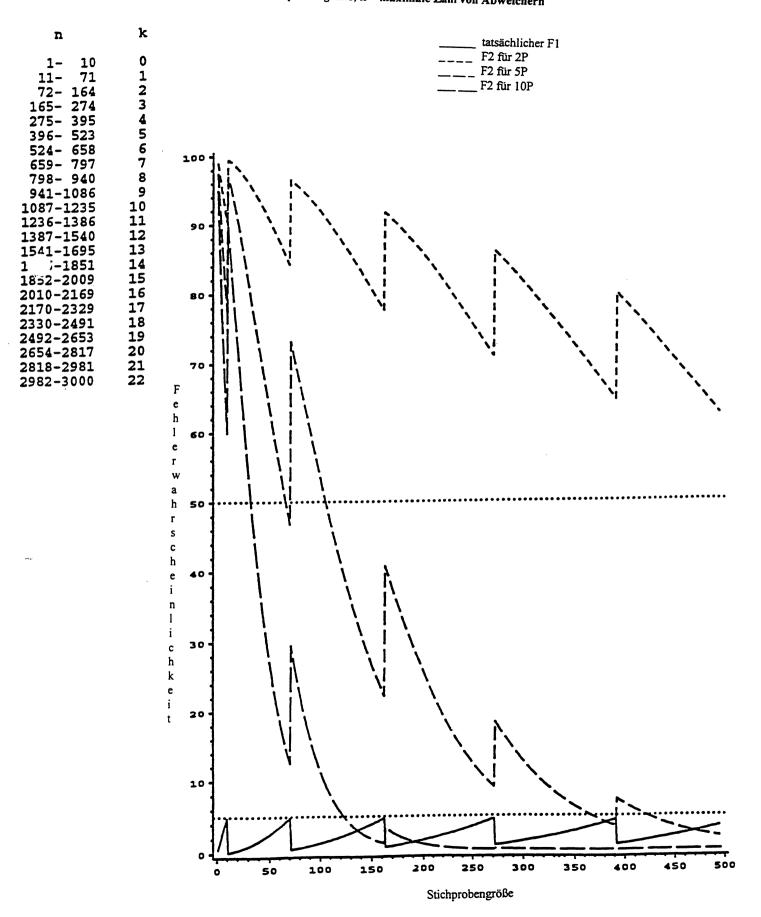


Tabelle und Darstellung 12: Populationsstandard = 0,1%
Akzeptanzwahrscheinlichkeit ≥95%
n = Stichprobengröße, k = maximale Zahl von Abweichern

		The state of the s
n	k	
1- 51	0	tatsächlicher F1
52- 355	1	F2 für 2P
356- 818	2	F2 für 5P
819-1367	3	F2 für 10P
1368-1971	4	
1972-2614	5	
2615-3000	6 .**	

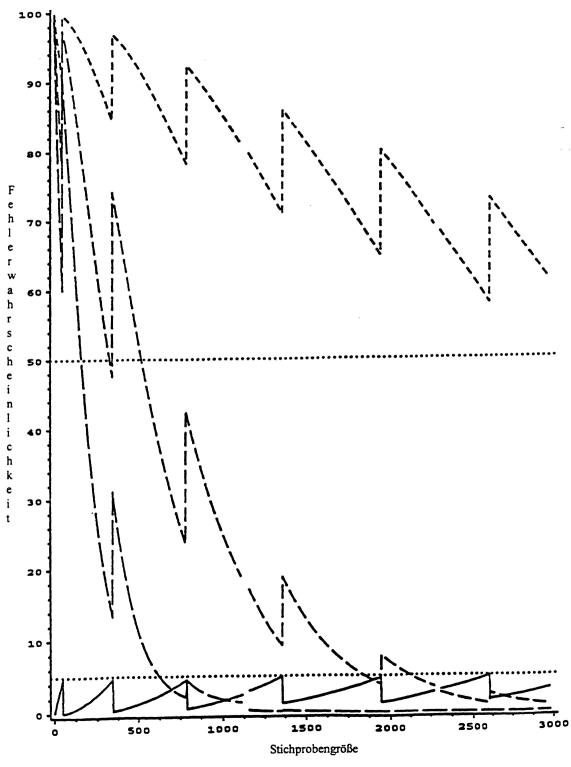
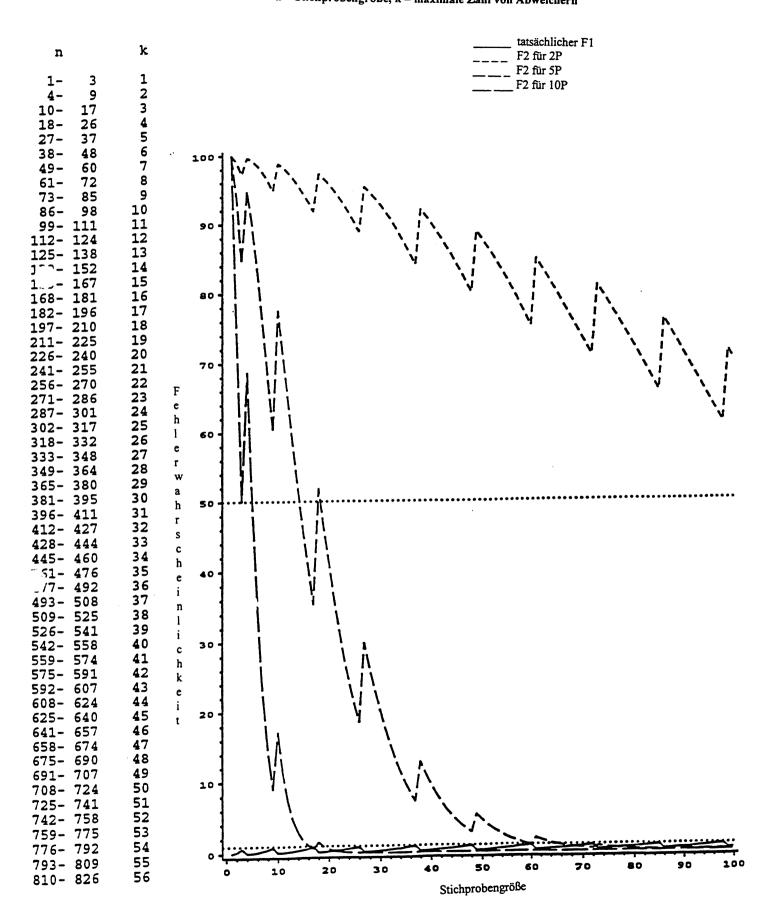
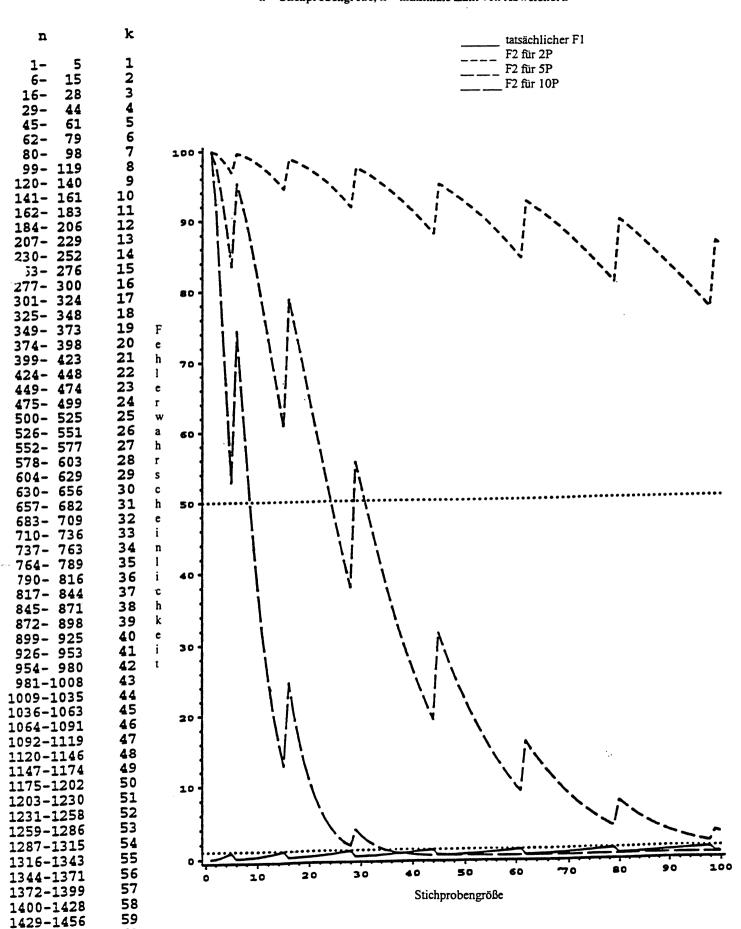



Tabelle und Darstellung 13: Populationsstandard = 5%
Akzeptanzwahrscheinlichkeit ≥99%
n = Stichprobengröße, k = maximale Zahl von Abweichern


Tabelle und Darstellung 13 (Fortsetzung):

n	k
827-843 844-860 861-877 878-891 9129-945-9929 963-9979 980-1031 1032-1048 1049-1063 1049-1083 1049-1135 1136-1133 1154-1118 1119-1135 1136-1153 1154-1170 1171-1187 1223-1240 1211-1258-1225 1223-1240 1241-1257 1258-1275 1276-1292 1231-1327 1328-1345 1346-1362 1346-1363 1381-1398 1399-1413 1452-1468 1469-1468 1487-1504 1505-1521 1522-1539 1540-1557 1558-1574 1558-1574 1575-1628 1646-1663 1664-1663 1664-1681 1771-1788 1682-1770 1718-1734 1735-1752 1753-1770 1771-1788 1789-1806	78901234567890123456789012345678901234567890123456789012 11111111111111111111111111111111111

Tabelle und Darstellung 14: Populationsstandard = 3%

Akzeptanzwahrscheinlichkeit ≥99%

n = Stichprobengröße, k = maximale Zahl von Abweichern

60

61

1457-1484

1485-1513

Tabelle und Darstellung 15: Populationsstandard = 2%

Akzeptanzwahrscheinlichkeit ≥99%

n = Stichnrobenge 8 kg = populations 1.7 kg = 1.7

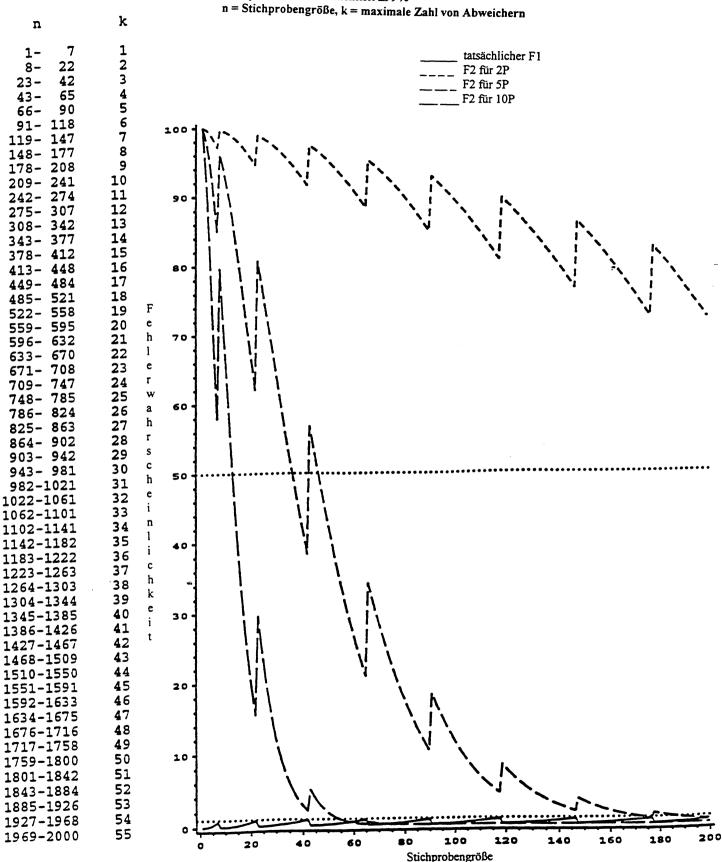


Tabelle und Darstellung 16: Populationsstandard= 1%
Akzeptanzwahrscheinlichkeit ≥99%
n = Stichprobengröße, k = maximale Zahl von Abweichern

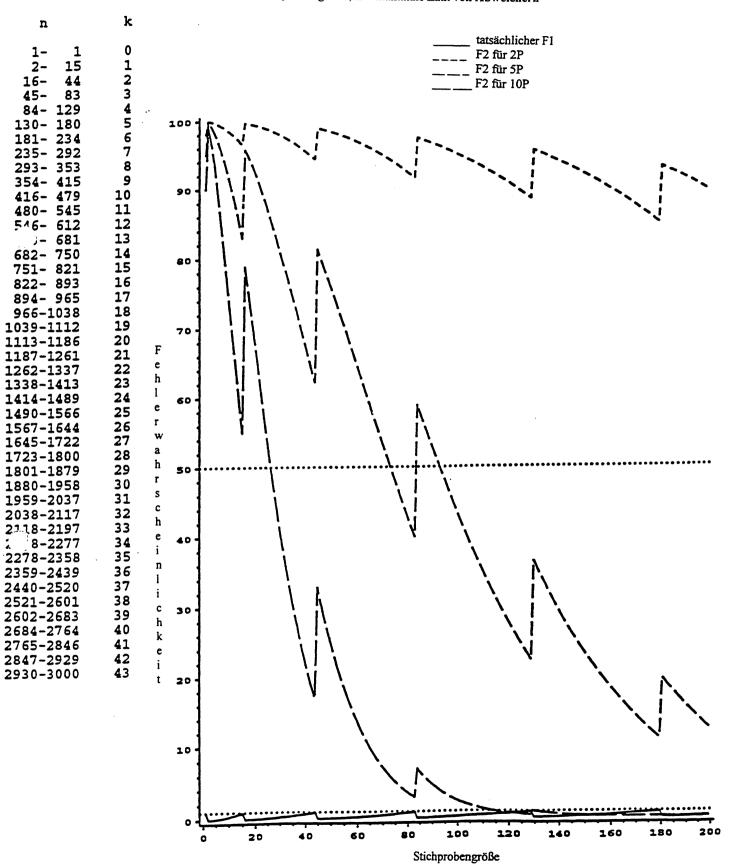


Tabelle und Darstellung 17: Populationsstandard = 0,5%
Akzeptanzwahrscheinlichkeit ≥99%

n = Stichprobengröße, k = maximale Zahl von Abweichern

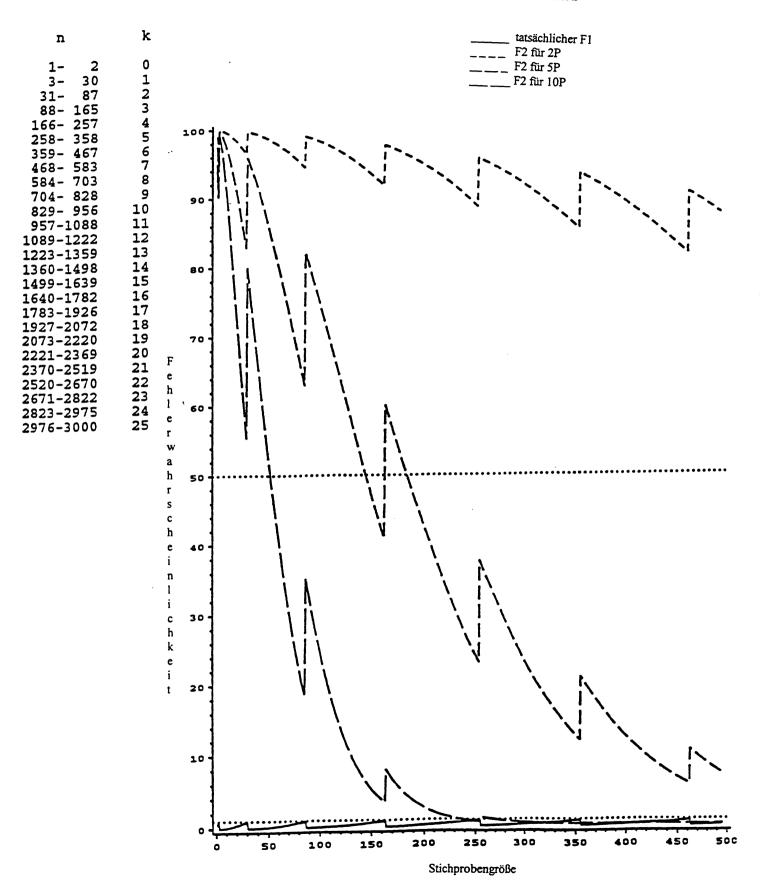


Tabelle und Darstellung 18: Populationsstandard = 0,1%

Akzeptanzwahrscheinlichkeit ≥99%

n = Stichprobengröße, k = maximale Zahl von Abweichern

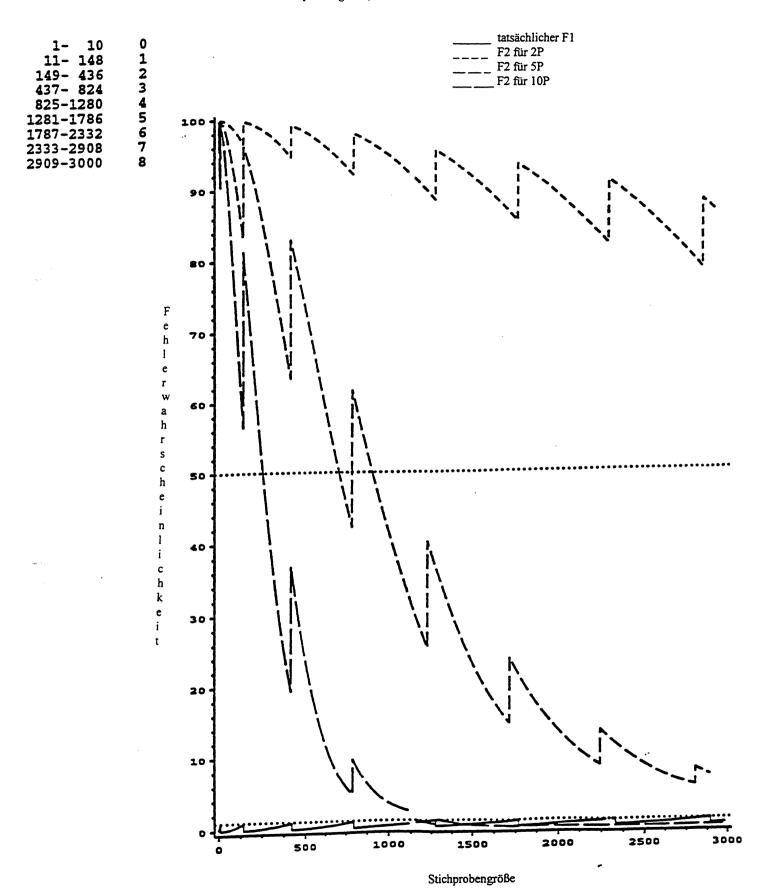


Tabelle und Darstellung 19: Populationsstandard = 10%

Akzeptanzwahrscheinlichkeit ≥ 90%

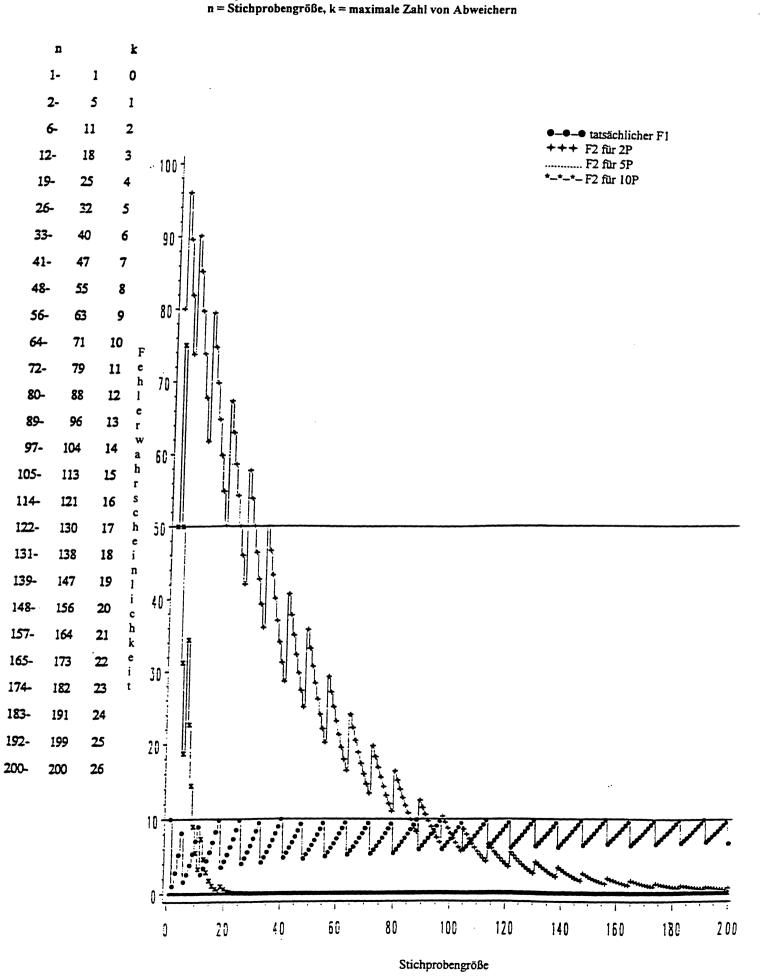
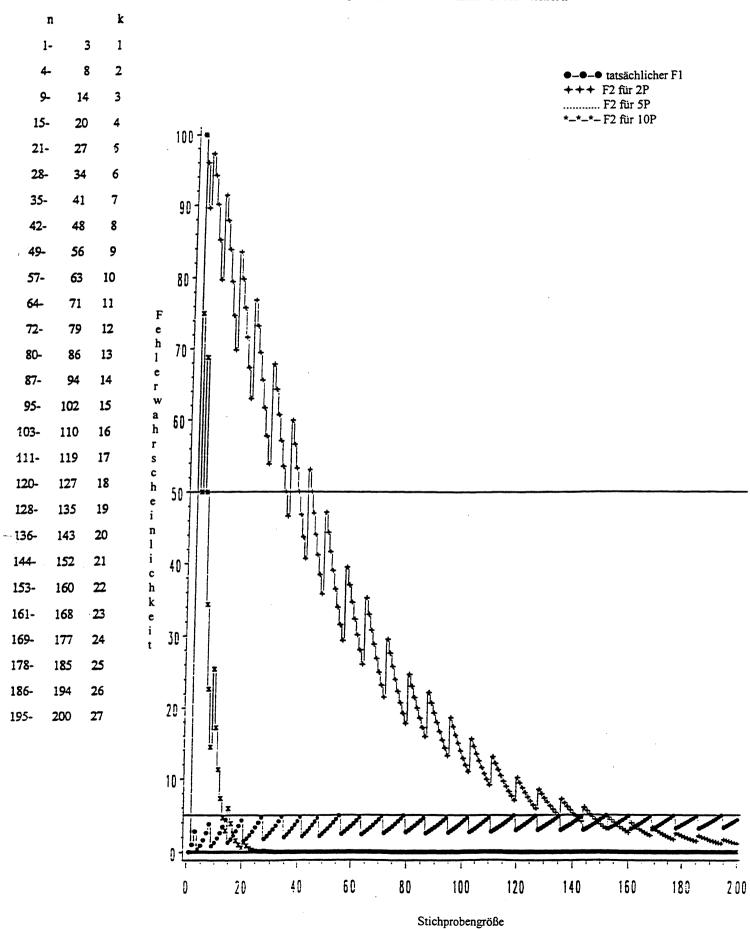
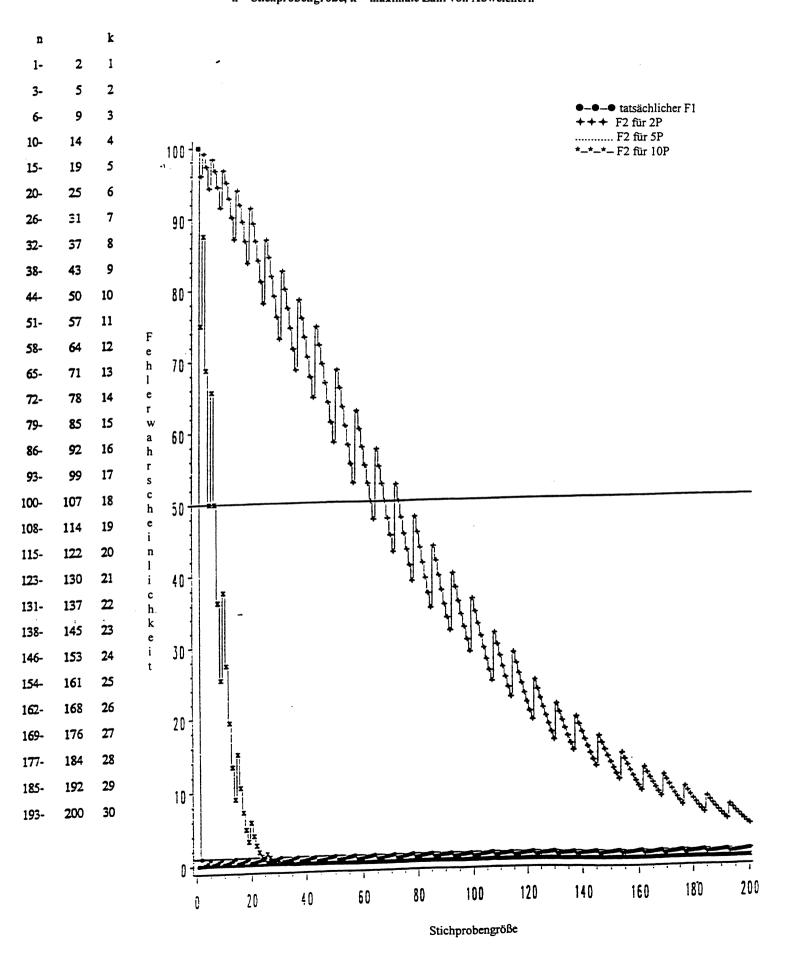



Tabelle und Darstellung 20: Populationsstandard = 10%

Akzeptanzwahrscheinlichkeit ≥ 95%

n = Stichprobengröße, k = maximale Zahl von Abweichern



page 38

Tabelle und Darstellung 21 : Populationsstandard = 10%

Akzeptanzwahrscheinlichkeit ≥ 99%

n = Stichprobengröße, k = maximale Zahl von Abweichern

