

TWV/50/23 Add. ORIGINAL: English DATE: June 24, 2016

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS

Geneva

TECHNICAL WORKING PARTY FOR VEGETABLES

Fiftieth Session Brno, Czech Republic, June 27 to July 1, 2016

ADDENDUM TO

NEW ISSUES ARISING FOR DUS EXAMINATION

Document prepared by the Office of the Union

Disclaimer: this document does not represent UPOV policies or guidance

This document contains presentations to be made at the fiftieth session of the Technical Working Party for Vegetables (TWV), as follows:

- Annex I: "Vegetatively propagated varieties in a normally seed propagated species", by an expert from the Netherlands;
- Annex II: "Resistance-specific molecular markers", by an expert from the Netherlands;
- Annex III: "Effect of seed Priming on vegetable DUS tests" by an expert from the Community Plant Variety Office of the European Union (CPVO)

[Annexes follow]

TWV/50/23 Add.

ANNEX I

VEGETATIVELY PROPAGATED VARIETIES IN A NORMALLY SEED PROPAGATED SPECIES BY AN EXPERT FROM THE NETHERLANDS

Ĩ.	Pepper and tomato: Vegetatively propagated plant material to submit
	 The DUS test is performed with young rooted cuttings (basic material) provided by the applicant; If a second cycle is needed, new rooted cuttings are required; The quality of the material is very dependent on the source of the material; i.e. the propagation by the applicant; It is very difficult to compare the vegetatively propagated material with seed propagated material, because the growing cycles are not simultaneous

Ţ	Assessment DUS testing of vegetative varieties compared to seed varieties		
	• Method : Varieties where chosen to represent the whole range of expressions for the characteristics Plant height, Time of flowering and Time of harvest maturity.		
	 Comparison of Plants from seedlings vs. plants from cuttings Cuttings from young plants vs. cuttings from older plants From cuttings only 		

Pepper and tomato Results

- Tomato
 - By taking cuttings, the intensity of leaf colour becomes slightly darker green than in plants from seeds. To be able to observe distinctness between a vegetatively propagated candidate and seed propagated comparisons, the comparisons should be grown from cuttings as well. This will make the trial more expensive.
 - It takes secure planning to have plants from seeds and plants from cuttings in the same plant stage when planting.

[Annex II follows]

TWV/50/23 Add.

ANNEX II

RESISTANCE-SPECIFIC MOLECULAR MARKERS BY AN EXPERT FROM THE NETHERLANDS

	Prop	osed	strate	ЭУ	
	1. PCR result	Resistance marker present (dominant marker)	Resistance marker absent (dominant marker)	Homozygous resistant or heterozygous (co-dominant marker)	Homozygous susceptible (co-dominant marker)
	2. Conclusion DNA	Resistant	Susceptible, or a mistake in the test, or Resistant (based on a different gene)	Resistant	Susceptible, or Resistant (based on a different gene)
	3a. TQ info RES	Okay: conclusion resistant	Not okay: bioassay	Okay: conclusion resistant	Not okay: bioassay
nak{tuinbouw	3b. TQ info SUSC	Not okay: bioassay	Confirmation by bioassay (# plants)	Not okay: bioassay	Okay: conclusion susceptible

	Correlation		
State -	Verticillium dahliae	e Ve1 and Ve2 genes	
CANK TON	Total # varieties	Correlation PCR vs TQ and Bioassay	
	94	98%	
	2	Ve1-ve2 new haplotype = intermediate resistance	
	Discovery of combi might explain newly levels for Verticillium	nation of new alleles (=haplotype) that / observed intermediate resistance m.	
46. VG Resistance to (*) Meloidegene (*) Incugnits (MI)	Meloidogyne incognita MI1.2 gene		
QN susceptible	Total # varieties	Correlation PCR vs Bioassay	
mederately resistant	130	99%, but uncertainty about differentiation between HR and IR	
naktuinbouw	1 resistant fragment This candidate variety als This application was not	Susceptible in bioassay so had intermediate resistance levels for Ve. registrated. Not DUS.	

	Corre	alation	
	Tomato Mosaic Virus (ToMV) Tm2 and Tm2 ² Total # varieties Correlation PCR vs TQ and Bioassay		
V	100	100%	
	Fusarium oxysporum f. sp. lycopersiciI-2 geneTotal # varietiesCorrelation PCR vs TQ and Bioassay		
nak tuinbouw	196	100%	

Known m	arkers for tomato resistances II
TSWV reference: Dianese E.C., Fonseca M.E.N., Goldbach R., Kormelink R., Inoue-Nagata A.K., Resende R.O., Boiteux L.S.(2009) Development of a locus- specific, co-dominant SCAR marker for assisted-selection of the SW-5 (Tospovirus resistance) gene cluster in a wide neme of tematic	 Tomato Spotted Wilt Virus (TSWV) Sw-5 (TaqMan PCR) Tomato Yellow Leaf Curl Virus (TyLCV) Ty-1 / Ty-3 (Melt Curve analysis)
Vide range of tomato accessions. Mol Breeding (2010) 25:133-142. TyLCV reference: Verlaan M.G.: The Tomato Yellow Leaf Curl Virus Resistance Gene Ty-1 and TY-3 are allelic and Code for DFGD- Class RNA Dependent RNA	Problems: TSWV: • Quarantine pathogen in EU • Difficult bioassay in a tent • Trips • Very instable virus
Polymerases. PLOS Genetics March 2013 Volume 9 issue 3. Patent: http://www.google.com/paten ts/WO2012125025A1?cl=en	 Many false negatives sometimes false positives TYLCV: Quarantine pathogen in EU White Fly Difficult bioassay based on Agrobacterium inoculation with transgen

	Corr	elation
	TSWV Sw-5 Total # varieties 118 Total # varieties 37	Correlation PCR vs TQ 100% Correlation PCR vs TQ and Bioassays 100%
nak/tuinbouw	TyLCV Ty-1/Ty Total # varieties 15 Bioassay is no	<i>I-3</i> Correlation PCR vs TQ 100% ot (yet) possible in NL.

Quality in Horticulture

[Annex III follows]

TWV/50/23 Add.

ANNEX III

EFFECT OD SEED PRIMING ON VEGETABLE DUS TESTS BY AN EXPERT FROM THE COMMUNITY PLANT VARIETY OFFICE OF THE EUROPEAN UNION (CPVO)

[End of Annex III and of document]