

TWC/26/15 ORIGINAL: English DATE: August 22, 2008

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA

TECHNICAL WORKING PARTY ON AUTOMATION AND COMPUTER PROGRAMS

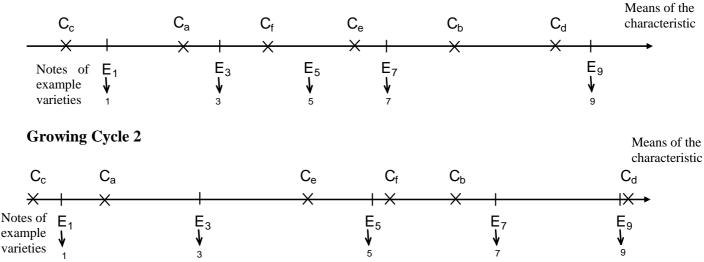
Twenty-Sixth Session Jeju, Republic of Korea, September 2 to 5, 2008

TRANSFORMATION OF MEASURED CHARACTERISTICS INTO NOTES FOR DESCRIPTION PURPOSES

Document prepared by experts from France

1. This document provides an explanation of how variety descriptions (i.e. "notes" for each characteristic) are developed in France for measured, quantitative characteristics. An explanation is made of the different approaches for vegetatively propagated, self-pollinated, hybrid and cross-pollinated varieties.

2. In the UPOV Test Guidelines, many characteristics used to describe the varieties are quantitative and are assessed by measurement. The indications used in the Test Guidelines are as follows:


- QN: quantitative characteristic
- MS: measurement of a number of individual plants or parts of plants.
- MG: single measurement of a group of plants or part of plants.

3. The first part of this document explains the general principle for making such a transformation with a simple example. The second part illustrates this principle with the use of a regression. An example of cross-pollinated varieties is given: the description of the characteristic "Plant: natural height at inflorescence emergence" for the varieties of Tall Fescue (*Festuca arundinacea* Schreb.).

Example of a simple transformation of measured characteristics into notes on the basis of example varieties

4. In order to get a clear picture, the procedure is described with an illustrative example plus some explanations. The figure below gives the means of a characteristic for candidate varieties (C_a to C_f) and for example varieties (E1 is an example variety for note 1, E3 is an example variety for note 3...).

Figure 1: collection of measured data on one quantitative characteristic for 6 candidate varieties (Ca to Cf) and a set of 5 example varieties (E1 to E9) (1) during 2 growing cycles.

Growing Cycle 1

(1) In this presentation, one example variety is available for each uneven note in a scale from 1 to 9

5. For each growing cycle, the average values of example varieties and candidate varieties are distributed on an axis to illustrate the position of candidate varieties in relation to the example varieties and the corresponding notes. Due to environmental effect, the relative positions of candidate varieties compared to the example varieties can change from one cycle to another.

6. C_e and C_f for instance are both comparable to E_{5} , but the ranking is reversed; C_b is next to E_7 but in one growing cycle the value is lower while in the other it is higher.

7. Those examples illustrate changes in ranking that can occur in practice. Such changes can be rare in some characteristics, and more likely to occur on other characteristics, depending on genotype x environment interaction.

8. The choice of an adequate set of example varieties is essential in order to keep a good coverage of the range of variation and to avoid change in the order of the notes.

9. Depending on the agro-climatic conditions of the testing place and on the total variation of the characteristics among varieties adapted to these conditions, the full scale or only a part of it can be used.

10. With regard to example varieties, the set defined in the UPOV Test Guidelines might be used or, if it is not adapted or available, a national or regional set of example varieties can be

defined and kept as far as possible to give consistency to the system. When necessary, an example variety can be changed and replaced by a new one which is already well described with the same note in the same agro-climatic environment.

11. The final notes given to the candidate varieties take into account the position of the notes in each growing cycle in relation to the example varieties and notes.

Candidate variety	Description note	Explanation			
Ca	2	one time close to E3, one time close to E1			
Cb	7	one time about 8, one time less than E7			
Сс	1	each time smaller than E1			
Cd	9	each time close to E9			
Ce	5	one time between E5 and E7, one time between E3 and E5			
Cf	5	two times around E5			

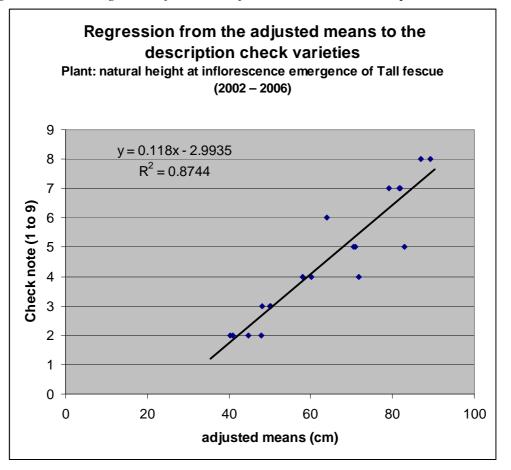
Table 1: Final notes given to the candidate varieties

<u>Use of a linear regression for the description:</u> Example of "plant: natural height at inflorescence emergence" for Tall Fescue varieties

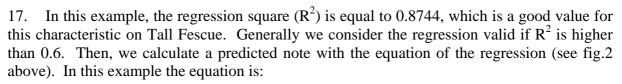
12. Cross-pollinated varieties, like synthetic varieties have important within-variety variability due to the genetic structure of this kind of variety. So the expression of a characteristic should be recorded using more than one observation. In the DUS trials of forage species, records are often taken from 60 individual plants.

13. The example used is the characteristic "Plant: natural height at inflorescence emergence" for Tall Fescue varieties.

Table 2: UPOV Test Guidelines TG/39/8 Meadow Fescue, Tall Fescue, characteristic 10


					-9-			
]	Plot ¹⁾ Parcelle Parzelle Parcela ¹		français	deutsch	español	Example Varieties Exemples Beispielssorten Variedades ejemplo	Note/ Nota
10.		A MS	Plant: natural height at <u>inflorescence</u> <u>emergence</u>	Plante: hauteur naturelle <u>à</u> <u>l'épiaison</u>	Pflanze: natürliche Höhe bei <u>Erscheinen der</u> <u>Blütenstände</u>	Planta: altura a la <u>emergencia de la</u> <u>inflorescencia</u>		
			short	basse	niedrig	baja	Eldorado (F.a.), Bundy (F.p.)	3
			medium	moyenne	mittel	media	Adventure (F.a.), Cosmos 11 (F.p.)	5
			long	haute	hoch	alta	Ibis (F.a.), Preval (F.p.)	7

TG/39/8 Meadow Fescue, Tall Fescue/Fétuque des prés, Fétuque élevée/Wiesen-, Rohrschwingel/Festuca pratense, Festuca alta 2002-04-17 -9-


14. In measurements of single plants (MS) in spaced plant trials (A), a statistical procedure recommended by UPOV is the Combined Over Years Distinctness (COYD) analysis. This method takes into account variations between years. The COY D provides, for each measured characteristic, adjusted means for the reference varieties and the candidate varieties.

15. For the purpose of the description, we transform these adjusted means to notes. We use a linear regression from the adjusted means to "description check varieties". The description check varieties are already well described example varieties (i.e. example varieties in the UPOV Test Guidelines or national example varieties).

16. The graph in Figure 2 shows the regression from the adjusted means to the description note. In this case, 4 varieties had been described with the note 2, 2 varieties with note 3 etc.

Figure 2: linear regression from the adjusted mean to the description check variety

Predicted note = 0.118 x adjusted mean - 2.9935.

From this we can compute the description note.

Table 3: Adjusted mean and description note for the characteristic natural height at inflorescence emergence of Tall Fescue varieties. The complete table is provided in the Annex

Variety name	Adjusted mean (cm)	Check description note	Predicted note	Description note	
C1	35.50		1.19423	1	
BONAPARTE	44.71	2	2.28068	2	
ELDORADO	47.90	2	2.65699	3	
C2	48.15		2.68648	3	
MONTSERRAT	48.15	3	2.68648	3	
MURRAY	50.29	3	2.93893	3	
C3	52.78		3.23266	3	
TOMAHAWK	54.80	•	3.47095	3	
BORNEO	58.11	4	3.86141	4	
C4	58.94		3.95932	4	
BARDAVINCI	60.28	•	4.11739	4	
VILLAGEOISE	62.07		4.32855	4	
C5	62.13		4.33563	4	
DANIELLE	63.97	6	4.55268	5	
DIVYNA	64.54		4.61992	5	
C6	69.54	•	5.20975	5	
GARDIAN	70.55	5	5.32889	5	
EMERAUDE	70.91	5	5.37136	5	
CENTURION	71.81	4	5.47753	5	
SZARVASI 56	73.18	•	5.63914	6	
BARCEL	79.41		6.37406	6	
DULCIA	81.63	7	6.63594	7	
LUNIBELLE	81.85	7	6.66190	7	
C7	86.57		7.21869	7	
BARIANE	87.02	8	7.27177	7	
C8	87.44	•	7.32132	7	
APRILIA	89.28	8	7.53837	8	
С9	89.65	•	7.58202	8	
FLEXY	90.31	•	7.65988	8	

Conclusions

18. The two procedures described make it possible to take into account the environmental effect on the expression of the characteristics and also the interaction between variety and environment.

19. Thus the comparison between varieties tested in different environments and years is made possible. This transformation of measured data into notes makes it possible to store the description in a database and to screen varieties within the reference collection.

20. The examples selected illustrate two simple ways to obtain coherent notes, the first without any computations, the second with computations that can be performed without the need of a statistical package.

21. More sophisticated methods have been described, such as the DESC program from the United Kingdom. Procedures needing statistical packages have been used in France as well, and will also be used in future. The choice of an appropriate procedure results from discussion between crop experts and IT experts or statisticians, and is a compromise between the needs, the variability, and ease of use.

[Annex follows]

TWC/26/15

ANNEX

ADJUSTED MEAN AND DESCRIPTION NOTE FOR THE CHARACTERISTIC NATURAL HEIGHT AT INFLORESCENCE EMERGENCE OF TALL FESCUE VARIETIES.

Variety name	Adjusted mean (cm)	Check description note	Predicted note	Description note	Variety name	Adjusted mean (cm)	Check description note	Predicted note	Description note
C1	35.5		1.19423	1	NAIROBI	56.1		3.6243	4
BEAGLE 1	39.7		1.68968	2	TOMCAT 1	56.23		3.63964	4
FARANDOLE	40.37	2	1.76872	2	TAR HEEL	56.52		3.67385	4
ASTERIX	41	2	1.84303	2	NINJA	56.54		3.67621	4
C2	41.17		1.86309	2	ELEGANCE	56.57		3.67975	4
CORONADO	44.05		2.20283	2	IDEFIX	57.25		3.75996	4
BONAPARTE	44.71	2	2.28068	2	COCHISE	57.66		3.80833	4
SILVERADO	44.86		2.29838	2	WOLFPACH	58.07		3.85669	4
BARLEXAS	45		2.31489	2	BORNEO	58.11	4	3.86141	4
NOVO	46.37		2.4765	2	ELISA	58.66		3.92629	4
C3	46.38		2.47768	2	MIRO	58.75		3.93691	4
C4	46.77		2.52369	3	ADOBE	58.77		3.93927	4
ELDORADO	47.9	2	2.65699	3	C14	58.94		3.95932	4
C5	48.15		2.68648	3	FILIPPA	58.94		3.95932	4
MONTSERRAT	48.15	3	2.68648	3	ARMINDA	59.13		3.98173	4
NESTORIX	48.17		2.68884	3	LUEUR	59.47		4.02184	4
PURE GOLD	48.21		2.69356	3	GREENZEAL	59.61		4.03836	4
LEPRECHAUN	49.43		2.83748	3	ESTIVADA	59.65		4.04308	4
O.GOLD	49.99	3	2.90354	3	GUISANE	60.07	4	4.09262	4
REGIMENT	50.27		2.93657	3	BARDAVINCI	60.28		4.11739	4
MURRAY	50.29	3	2.93893	3	DARCY	60.3		4.11975	4
LABARINTH	50.46		2.95898	3	PIXIE	60.56		4.15042	4
DYNASTY	50.87		3.00735	3	DENISE	60.64		4.15986	4
DEBUSSY1	50.95		3.01678	3	C15	61		4.20233	4
BARBIZON	51.41		3.07105	3	MAX	61.35		4.24362	4
MASTERPIECE	51.42		3.07223	3	APACHE	61.67		4.28137	4
TULSA	51.42		3.07223	3	WRANGLER	61.86		4.30378	4
MEANDRE	51.43		3.07341	3	TALENT	61.96		4.31558	4
C6	52.78		3.23266	3	VILLAGEOISE	62.07		4.32855	4
SAVOY	52.94		3.25153	3	C16	62.13		4.33563	4
C7	53.25		3.2881	3	IZELLA	62.24		4.34861	4
C8	53.78		3.35062	3	FALCON I	63.03		4.4418	4
BRAVO	54.05		3.38247	3	C17	63.11		4.45123	4
TALISMAN	54.25		3.40607	3	ODYS	63.32		4.47601	4
PLANTATION	54.33		3.4155	3	GRANDE	63.77		4.52909	5
C9	54.34		3.41668	3	DANIELLE	63.97	6	4.55268	5
C10	54.57		3.44382	3	DIVYNA	64.54		4.61992	5
C11	54.77		3.46741	3	KORD	64.8		4.6506	5
TOMAHAWK	54.8		3.47095	3	OLGA	65.13		4.68952	5
BARLEROY	55.01		3.49572	3	KILIMANJARO	66.49		4.84996	5
KONTIKI	55.19		3.51695	4	AMALIA	66.68		4.87237	5
C12	55.33		3.53347	4	SUSANA	66.79		4.88535	5
EMPRESS	55.49		3.55234	4	OLIVINE	67		4.91012	5
BARFELIX	55.93		3.60425	4	FINELAWN	67.29		4.94433	5
C13	55.93		3.60425	4	BARLEDUC	67.38		4.95494	5
MURIETTA	55.97		3.60897	4	LUDICAL	67.57		4.97736	5
ENDEAVOR	56.04		3.61722	4	JAGUAR	67.89		5.01511	5

TWC/26/15 Annex, page 2

Variety name	Adjusted mean (cm)	Check description note	Predicted note	Description note	Variety name	Adjusted mean (cm)	Check description note	Predicted note	Description note
MUSTANG	67.99		5.0269	5	DAUPHINE	79.98	•	6.4413	6
PROSPER	68.56		5.09414	5	BARELITE	80.22		6.46961	6
LOFA	68.91		5.13543	5	BARADISO	80.25	-	6.47315	6
SINFONIA	68.99		5.14487	5	BARCARELLA	80.26	-	6.47433	6
C18	69.54		5.20975	5	FELINA	80.45	-	6.49674	6
TERROS	69.81		5.2416	5	METSOVO	80.72		6.5286	7
SEINE	70.06		5.27109	5	BELFINE	80.88	-	6.54747	7
LIPALMA	70.25		5.2935	5	JORDANE	80.9	-	6.54983	7
GARDIAN	70.55	5	5.32889	5	BARCELINA	81.02		6.56398	7
LIFEMA	70.67		5.34305	5	MOLVA	81.12		6.57578	7
ACHILLES	70.85		5.36428	5	MYLENA	81.14	-	6.57814	7
EMERAUDE	70.91	5	5.37136	5	MADRA	81.52	-	6.62297	7
PAULITA	70.93		5.37372	5	DULCIA	81.63	7	6.63594	7
TACUABE	71.34		5.42209	5	LUNIBELLE	81.85	7	6.6619	7
FESTORINA	71.63		5.4563	5	KORA	82.54		6.74329	7
CENTURION	71.81	4	5.47753	5	CARMINE	82.89		6.78458	7
FLORINE	72.35		5.54123	6	TUSCANY	82.93	5	6.7893	7
PERUN	72.59		5.56954	6	HYKOR	83.11		6.81053	7
SZARVASI 56	73.18		5.63914	6	TIMA	83.19	-	6.81997	7
KASBA	73.56		5.68397	6	AMELIE	83.53	-	6.86008	7
MAXIMISE	74.29		5.77008	6	EXELLA	83.56		6.86362	7
STRAND	74.87		5.8385	6	C19	84.01	-	6.9167	7
BAROLEX	75.64		5.92933	6	SONI	85.5	-	7.09247	7
KORINA	75.77		5.94467	6	C20	85.99	-	7.15027	7
MARTIN II	75.77		5.94467	6	VENUS	86.35	-	7.19274	7
ADVANCE	75.92		5.96236	6	C21	86.57	-	7.21869	7
FELINE	76.35		6.01309	6	C22	86.69	-	7.23285	7
FUEGO	76.6		6.04258	6	BARIANE	87.02	8	7.27177	7
NORIA	76.6		6.04258	6	C23	87.44	-	7.32132	7
PASTELLE	76.69		6.0532	6	C24	87.53		7.33194	7
NOBEL	77.02		6.09213	6	APRILIA	89.28	8	7.53837	8
EMERYS	78.26		6.2384	6	C25	89.65		7.58202	8
LUTINE	79.12	7	6.33985	6	FLEXY	90.31		7.65988	8
BARCEL	79.41		6.37406	6		1			

[End of Annex and of document]