

BMT/15/26 ORIGINAL: English DATE: June 27, 2016

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA PROFILING IN PARTICULAR

Fifteenth Session

Moscow, Russian Federation, May 24 to 27, 2016

ASSESSMENT AND CLASSIFICATION OF BREEDING ACCESSIONS OF VEGETABLE PLANTS WITH THE USE OF DNA MARKERS

Document prepared by experts from Russian Federation

Disclaimer: this document does not represent UPOV policies or guidance

The Annex to this document contains a copy of a presentation "Assessment and classification of breeding accessions of vegetable plants with the use of DNA markers" made at its fifteenth session of the Working Group on Biochemical and Molecular Techniques and DNA-Profiling in particular (BMT).

Domblides Arthur, Domblides Elena, Bondareva Liudmila, Startsev Victor, Romanov V., Kan L., Timin N.I., Agafonov A.F., Pivovarov V.F., All-Russian Research Institute of Vegetable Breeding & Seed Production

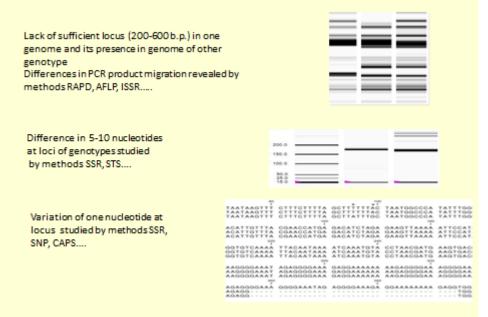
[Annex follows]

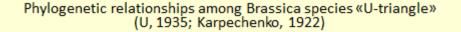
BMT/15/26

ANNEX

Assessment and classification of breeding accessions of vegetable plants with the use of DNA markers

Domblides Arthur Domblides Elena Bondareva Liudmila Startsev Victor Romanov V. Kan L. Timin N.I. Agafonov A.F. Pivovarov V.F.




ALL-RUSSIAN RESEARCH INSTITUTE OF VEGETABLE BREEDING & SEED PRODUCTION

The common plant breeding accessions

Species – groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups. Species are the largest and most inclusive reproductive communities of sexual and cross – fertilizing individuals that share in a common gene pool (Mayr 1940; Dobzhansky 1950) Variety – in classical taxonomy, heterogeneous grouping including non genetic variation of the phenotype, morph, domestic breeds, and geographic races (Mayr 1963). Cultivar - grouping of plants selected for desirable characteristics that can be maintained by propagation. Cultivar groups – the most closely related cultivars used for a long time for specific environment condition Biotechnologically produced plants – DH, cloned accessions, genetically modified etc.

Variation matching in DNA sequence

Naturally occurred hybridization
of these species produced

- B.rapa (leafy Asian genotypes turnip, bird rape, nappa cabbage – genome A, n=10),
- B.nigra (black mustard genome B, n=8),
- B.oleracea (head cabbage, Broccoli, Brussels sprout, Kohlrabi, Savoy, cauliflower, ornamental – genome C, n=9),

allotetraploid forms

- B. juncea (green mustard AB, n=18),
- B.napus (rapeseed, rutabagas -AC, n=19),
- B.carinata (Abyssinian mustard, Ethiopian mustard) -BC, n=17).

«U-triangle» (U, 1935; Karpechenko, 1922)

> B.rapa (геном А, n=10)

B.juncea (AB, n=18)

B.nigra (геном В, n=8) **B.carinata** (BC, n=17)

B.napus (AC, n=19)

> **B.oleracea** (геном C, n=9)

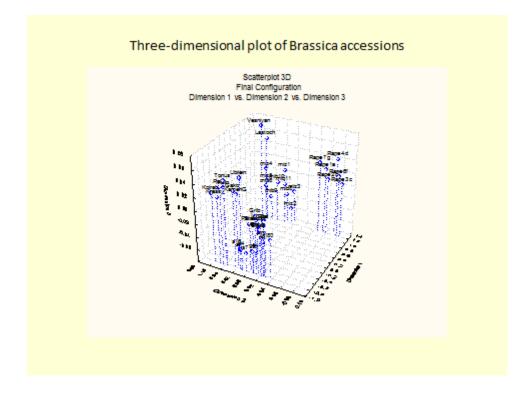
Plant material

genome C was represented by 12 commercial cultivars and 8 inbred lines of head cabbage Brassica oleracea convar. capitata(L.) Alef. var. capitata L. f. alba DC.

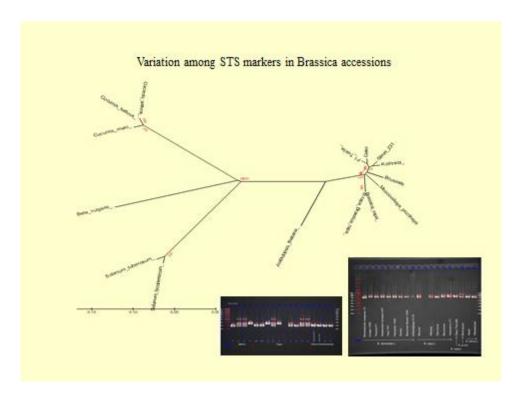
2 cultivars of red cabbage (convar. Capitata (L.) Alef. var. capitata L. f. rubra(L.) Thell.),

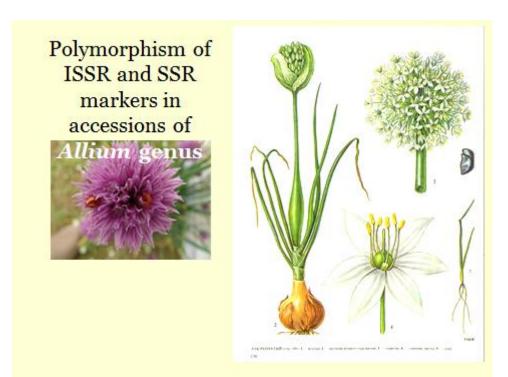
3 cultivars of ornamental cabbage (convar. acefala D.C.),

- 1 cultivar of broccoli (var. cymosa Duch),
- 1 cultivar of Savoy cabbage (convar. capitata(L.) Alef. var. sabauda L.),
- 1 accession of kohlrabi (convar. acefala(DC.) Alef. var.gongylodes L.)

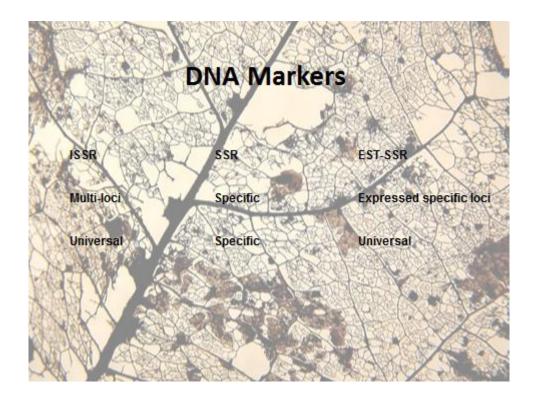

genome A, 2 cultivars of Chinese cabbage Brassica rapa ssp. chinensis (L.) Hanelt., 6 accessions of bird rape (ssp. oleifera (DC.) Metzger f. biennis),

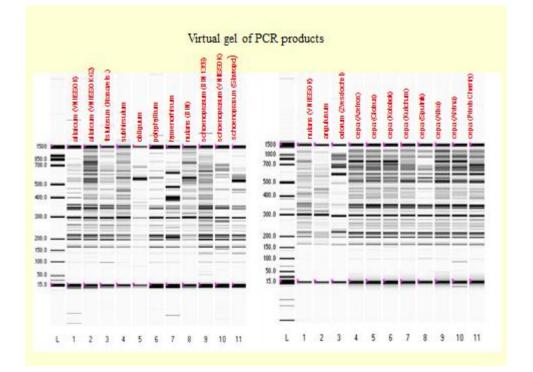

10 accessions of Mizuna and Mibuna salad green (ssp. nipposinica (Bailey) Hanelt)


from All-Russian Research Institute of Vegetable Breeding and Seed Production and N.I. Vavilov Research Institute of Plant Industry.


<section-header><section-header><text>

Examples of agarose gel electrophoregams

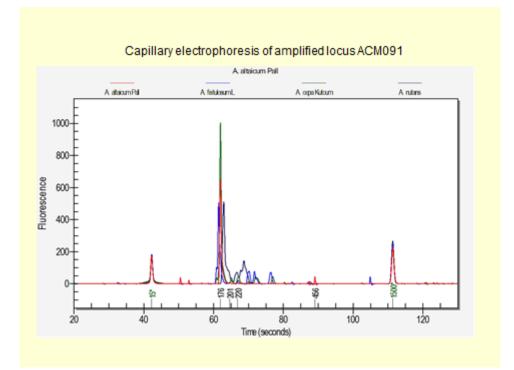


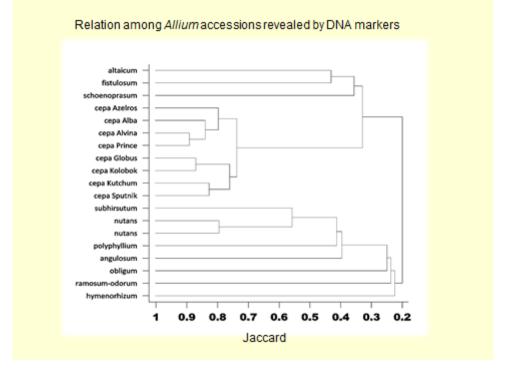

Allium species taken for the study

		New (by Friesen et al, 2006)	traditional (by Hanelt, 1992)
A.fistulosum L.	16	Сера/Сера	Rhizirid eu m/Cepa
A.altaicum Pall	16	Сера/Сера	Rhizirid eu m/Cepa
A.nutans L.	32	Rhizirideum/Rhizirideum	Rhizirid eu m/Rhiziri deum
A.schoenoprasum L.	16, 32	Cepa/Schoenoprasum	Rhizirid eum/Schoenoprasum
A.ramosum L.	16	Butomissa/Butomissa	Rhizirid eu m/Butomissa
A.obliguum L.	16	Polyprason/Orei prason	Rhizirid eum/Petroprason
Alangulosum L.	16	Rhizirideum/Rhizirideum	Rhizirid eu m/Rhiziri de um
A.hymenorrhizum Ledeb.	16	Polyprason/Falcatifolia	Rhizirid eu m/Oreiprason
A.subhirsutum L.	16	Amerall lum/Mollum	Amerallium/Mol lum
A.polyphyllum Kar&Kir	32	Polyprason/Faicatifolia	Rhizirid eum/Oreiprason
A.cepa L.	16	Cepa/Cepa	Rhizirid eu m/Cepa

15 subgenera, 56 sectors, 73 sectors, 780 species

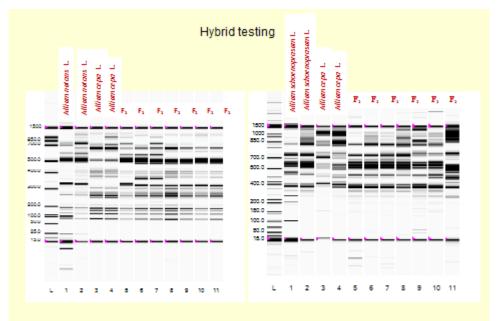
6 subgenera, 50 section and subsections, 600-700 species



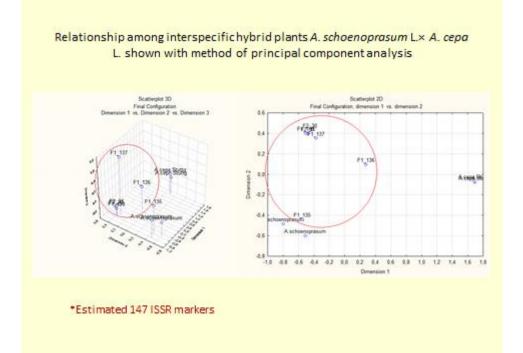

SSR-markers used for analysis

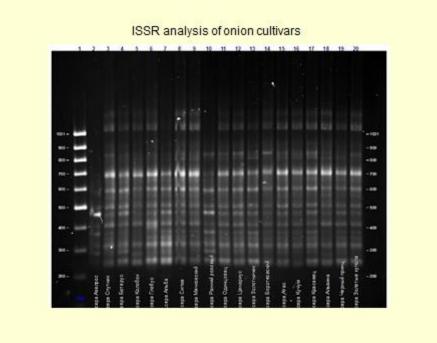
EST-SSR	Τ,	Type of repeat	Fragment size (og)	
ACM 004	55	(CCA)4	203-206-213	
ACM 018	53	(CCT)6	275-278	
ACM 024	\$7.5	(GCA)10-NNN-(GCA)4(ACA)4	150-190-200	
ACM 082	58	(TCT)13	190-200	
ACM 091	58	(TCT)10	190-200-220	
ACM 094	57	(TGG)5	120-150	

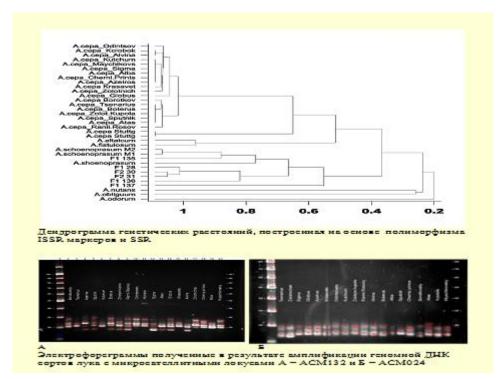
Species	EST-SSR markers						
	ACM 006	ACM 018	ACM 024	ACM 052	ACM 091	ACM 094	
Allian altaican Fall	+	+	+	÷	+	÷	
Allian flatalacan L.	+	+	+	+	+	÷	
Allian additionan L.	-	+	•	-	+	-	
Allian abligaan L.	-	+	+	+	+	•	
Allian polyphyllan Kar. & Kir	-	+		•	+	-	
Allfum Rymemorikizum Lodob	-	+	+	÷	+	-	
Allian naranz L.	-	+	•	•	+	-	
Allian angulatan L.	-	+		•	+	•	
Allian ackeenegreaun L	+	+	+	÷	-	-	
Allfon research L.	-	+	+	•	-	-	
Allian cape L	+	+	+	+	+	÷	

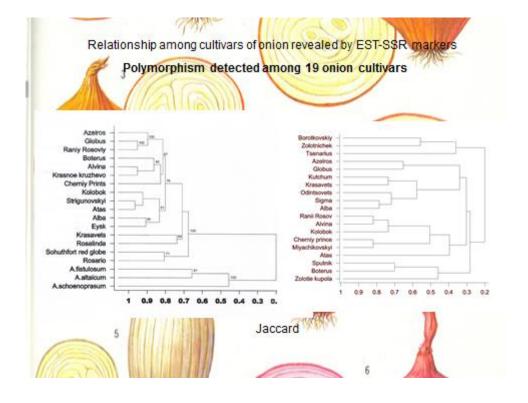


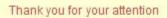
Interspesific hybrids




Virtual gel representing the PCR products observed after amplification ISSR loci of Allium reasons L., Statigarter Riesen (Allium core L) and interspecific hybrid plants


Virtual gel representing the PCR products observed after amplification ISSR loci of Allikow software variant $L_{\rm s}$ Stattgarter Riesen (Allium cape L.) and interspecific hybrid plants





Cultivan	Bulb skin color	Shape of bulb
A.cepe Azelios	Tellow	Globe
A.cepe Globus	Tellow	Globe
Loope Kolobok	Tellow	Globe
Losps Kutchum	Tellow	diobe
Losps Sorodikovskiy	Tellow	rist globa
Lospe Sotenus	Yellow	rist globe
Aceps Odintsovets	Tellow	rist globa
Lospe Zolotiye Kupola	Tellow	Flat globa
Lospa Signa	Tellow	Fist globe
Aceps Taenarius	Yellow	fist globs
Loeps Zolotnitchek	Yellow	diobe
Lospe Aten	Yellow golden	Sroad alliptic
Losps Alba	White	Globe
Lospe Chamily Prints	Dark violet	Globe
Lospa Alvina	Violet	rist
Lcapa Miyachikovskiy	Tellow	rie
Lcepe Sputnik	Tellow School Co	rist
Leeps Raniyi Rosoviy	Pink	Globe
Longe Kanaveta	Dark rad	Globe

[End of Annex and of document]