

BMT/15/23

ORIGINAL: English **DATE:** May 20, 2016

INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva

WORKING GROUP ON BIOCHEMICAL AND MOLECULAR TECHNIQUES AND DNA PROFILING IN PARTICULAR

Fifteenth Session

Moscow, Russian Federation, May 24 to 27, 2016

GREEN FORENSICS: WHOLE GENOME SEQUENCING APPROACH FOR PBR ENFORCEMENT

Document prepared by an expert from the Netherlands

Disclaimer: this document does not represent UPOV policies or guidance

The Annex to this document contains a copy of a presentation "Green Forensics: Whole Genome Sequencing approach for PBR enforcement" to be made at its fifteenth session of the Working Group on Biochemical and Molecular Techniques and DNA-Profiling in particular (BMT).

Hedwich Teunissen, Molecular Biologist, Naktuinbouw

[Annex follows]

ANNEX

GREEN FORENSICS: WHOLE GENOME SEQUENCING APPROACH FOR PBR ENFORCEMENT

Green Forensics: Whole Genome Sequencing approach for PBR enforcement

Hedwich Teunissen, Naktuinbouw R&D UPOV-BMT/15 – Moscow - May 2016

Fraud in horticulture

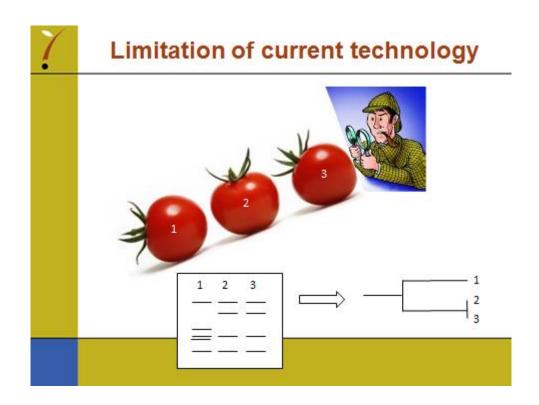
- 1. <u>Illegal propagation</u> of seeds or plants and commercialize under different name.
- 12,5% of all horticultural products is propagated illegally.

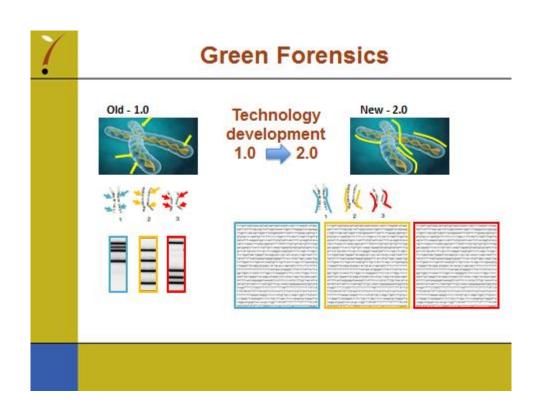
This percentage can even increase dependent on:

- manner of propagation
- location

2. Repeated cropping

Misuse the name of a good and popular variety to sell plants or seeds of inferior quality using this name. (fake logo's and packages).


Variety Tracer

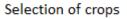

Genetic analyses for PBR enforcement

The 'Sherlock Holmes' concept in infringements

From Variety Tracer 1.0 to 2.0

Replace current DNA fingerprint technology by new technology based on High Throughput Sequencing (HTS)

- more information = better resolution
- Higher discriminative power
- Co-dominant in stead of dominant
- Better representation of the total genome (total DNA)
- More reliable
- Generally applicable
- Cost effective



Variety Tracer 2.0

Green Forensics

Tomato Cucumber Rose

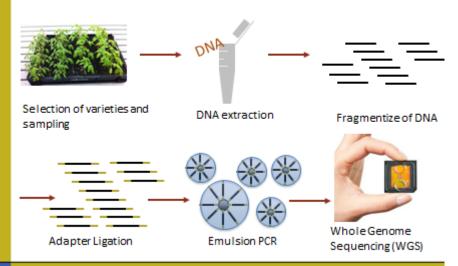
800 Mb diploid 200 Mb diploid

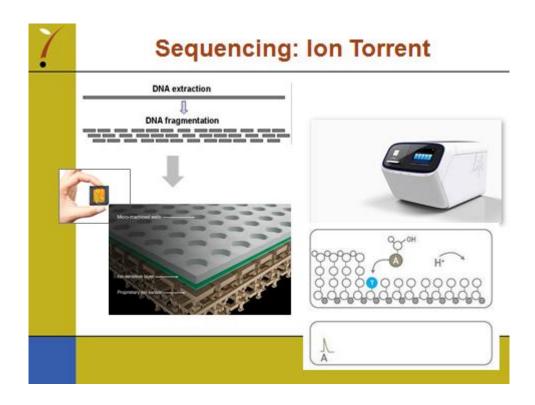
560 MB tetraploid 2.7 Gb diploid >25 Gb diploid

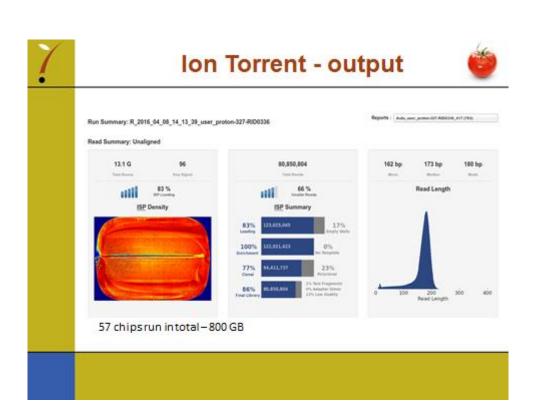
refG refG

proof of principle (=Chinese long) no refG

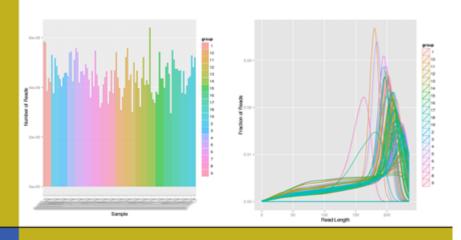
ref-Assembly no refG




Approach - step by step


- Selection of varieties, growing and DNA extraction
- Sequencing
- · Mapping against Reference genome
- · Determine Informative positions
- · Construction of database
 - 19 accessions/varieties; 5 replica's (training set)
- · Visualization built visualization tool MDS
- · Testing and validation
 - Different types; genetically closely related varieties; different Lots of same variety; mutants; seedlings...e.g.

"Wetlab" Pipeline



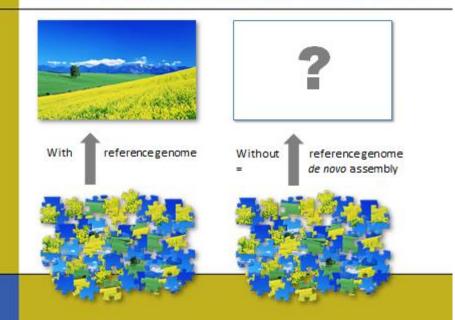
Data QC and trimming

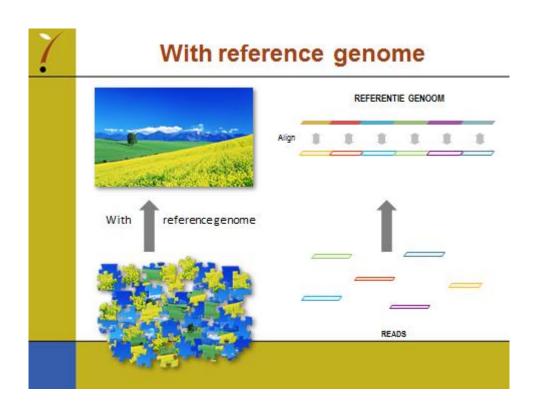
Check sequence data for artefacts

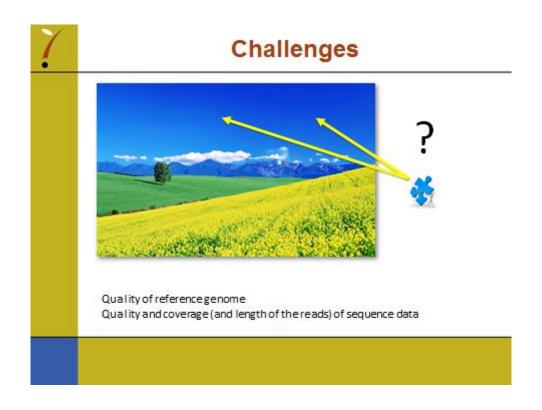


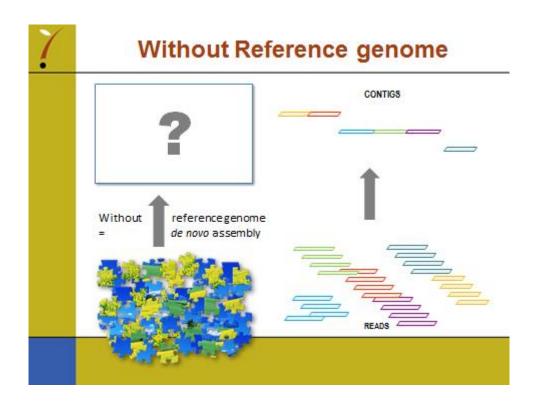
Approach - step by step

- Selection of varieties, growing and DNA extraction
- Sequencing
- · Mapping against Reference genome
- · Determine Informative positions
- · Construction of database
 - 19 accessions/varieties; 5 replica's (training set)
- · Visualization built visualization tool MDS
- · Testing and validation
 - Different types; genetically closely related varieties; different Lots of same variety; mutants; seedlings...e.g.


Organizing the sequence reads

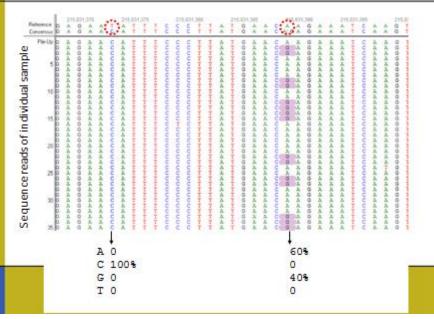



Sequence data analysis is like: 'do puzzles'



With or without Example on the cover

Percentage of reads mapped Percentage of reads mapped Output Description of reads mapped against reference genome



Approach - step by step

- · Selection of varieties, growing and DNA extraction
- Sequencing
- · Mapping against Reference genome
- · Determine Informative positions
- · Construction of database
 - 19 accessions/varieties; 5 replica's (training set)
- · Visualization built visualization tool MDS
- · Testing and validation
 - Different types; genetically closely related varieties; different Lots of same variety; mutants; seedlings...e.g.

Alignments

Base position analysis

 At each position the read coverage is determined and the occurrence of each nucleotide as a fraction of read depth (fraction N; frequency) is determined.

ı	pos	Α	С	G	T
I	-				
	x	0.8	0	0	0.2
1	_				
	у	0	0.6	0.4	0

Base position analysis

- · There are 3 possible genotypes per position (in diploid).
- A genotype is called only if all samples (replica's) of a variety have the same genotype!
- · A 'contrast' is defined as a combination of opposing genotypes.
- Base positions with contrasting genotypes between two varieties are selected.

Fraction N	Genotype	Description
0 - 0.2	-	Low abundance
0.4 - 0.6	н	Heterozygous
0.8 - 1	+	High abundance
other	N	Not determined

Genotype 1	Genotype 2
+	-
+	Н
-	+
-	н
Н	+
н	-

Tomato: 171 pairwise combinations

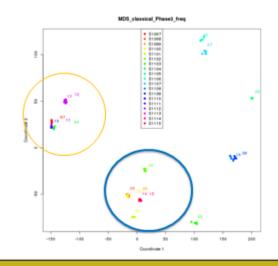
Number of positions with contrasting genotypes between variety pairs

```
$1097 $1098 $1099 $1100$1101 $1102 $1103 $1104 $1105 $1106 $1107 $1108 $1109 $1110 $1111 $11112 $1113 $1114 $1115
          0 542 510 704 1295 754 6090 570 8599 5569 6109 4727 6198 241 111 545 514 742 866
$1098
                 0 9 64 505 218 186 547 2201 1480 2175 569 1946 566 535 257 574 103 155
0 73 423 198 171 294 1655 1145 1651 452 1303 288 278 207 353 95 84
$1099
                              0 659 216 161 446 2811 1744 2794 649 2246 466 384 400 482 185 162
0 597 659 809 3713 3002 5016 713 889 949 800 877 1341 431 564
$1100
$1101
                                           0 89 405 1460 1276 1869 557 1345 500 425 525 525 205 257
0 5521 1480 1295 1895 218 1087 5849 4024 5879 5847 255 261
$1103
                                                        0 4867 1899 3297 2566 5320 139 119 234 255 406 547
                                                               D 285 833 116 169 5679 6088 4541 7505 1418 1977
D 875 188 899 2340 2365 1586 2099 1070 1557
$1105
                                                                            0 575 702 4014 4178 1787 2809 1566 2227
0 51 5196 3472 3528 4808 404 556
$1107
$1108
$1109
                                                                                         0 3926 4215 4075 5584 515
                                                                                                0 7 216 180 390 548
$1110
$1111
                                                                                                             0 16 335 374
51112
$1114
```

In total 85,691 positions with contrasting genotypes between varieties were selected including 2,351 heterozygous base positions (1.5%)

genetic distance

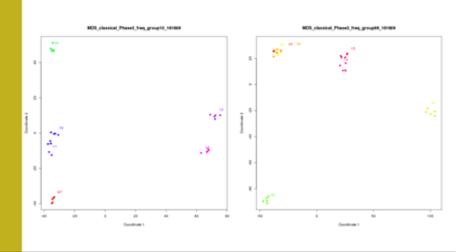
- Genetic distance is calculated based on the original frequencies (fraction N) of the contrasting base pairs on 85691 positions
- >160.000 contrasting base pairs in this dataset



Approach - step by step

- · Selection of varieties, growing and DNA extraction
- · Sequencing
- · Mapping against Reference genome
- · Determine Informative positions
- · Construction of database
 - 19 accessions/varieties; 5 replica's (training set)
- Visualization built visualization tool: MDS
- · Testing and validation
 - Different types; genetically closely related varieties; different Lots of same variety; mutants; seedlings...e.g.

Visualization - MDS


85691 relevant positions >160000 contrasting

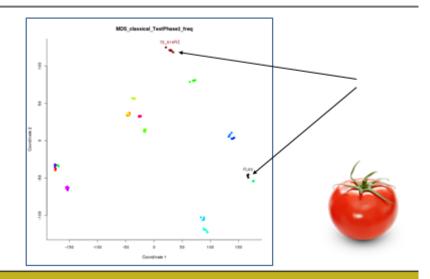
bases.

MDS = multidimensional scaling

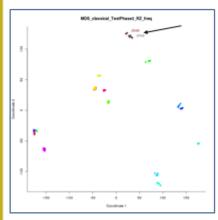
Re-analyzing the clusters

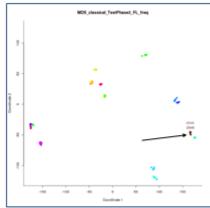
Approach - step by step

- Selection of varieties, growing and DNA extraction
- Sequencing
- · Mapping against Reference genome
- · Determine Informative positions
- · Construction of database
 - 19 accessions/varieties; 5 replica's (training set)
- · Visualization built visualization tool: MDS
- · Testing and validation
 - Different types; genetically closely related varieties; different Lots of same variety; mutants; seedlings...e.g.


Testing

- Cherry and Fresh market tomato (different types) and several maintenance samples.
- 2. Tomato growing contest (Harrowgate)
- 3. Real infringement case

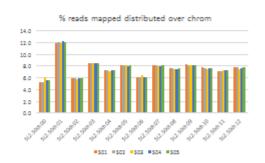



Cherry and Fresh market tomato

Cherry and Fresh market tomato

1

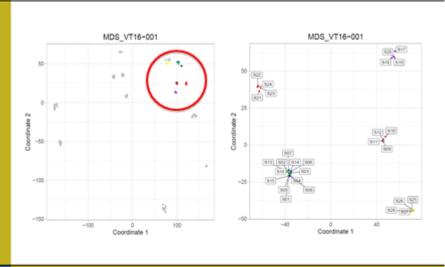
Tomato growing contest


Identity confirmed – no cheating

Unexpected discovery

Low mapping percentage for one sample??

Semple	Nr reads	Nr reads mapped	% mapped
501	14,891,765	14,691,276	98.7
502	19,500,545	19,026,261	-
503	16,093,446	6,221,944	(38.7)
504	18,251,261	18,075,659	20.0
505	17,655,012	17,558,559	98.4



DNA of Pseudomonas fluorescens: dope??

It works for infringements

7	Current status				
	6	Tomato	proof of principle	∇	
		Cucumber	ref-G (=Chinese Long)	₩	
	*	Rose	tetraploid no ref-G	V	
	٩	Lettuce	2.7 Gb diploid		
	3	Tulp	>25 Gb diploid no ref-G		

Acknowledgements University of Amsterdam (MAD) Naktuinbouw Timo Breit · Michel Ebskamp • Rick Orij Fleur Gawehns · Oskar Bruning-Gawehns Menno Hoekstra Inez Terpstra Daniel Deinum Genevieve Gerard · Crop DUS specialists Wim de Leeuw Selina van Leeuwen Marina van Olst nak tuinbouw

Quality in Horticulture

[End of Annex and of document]